B O S C H U N D S I E M E N S H A U S G E R Ä T E G R U P P E Frequency locking and error correction based sensing schemes Alex Retzker HUJI PSAS2016 23.05.2016.

Slides:



Advertisements
Similar presentations
Quantum dynamics and quantum control of spins in diamond Viatcheslav Dobrovitski Ames Laboratory US DOE, Iowa State University Works done in collaboration.
Advertisements

Memory must be able to store independently prepared states of light The state of light must be mapped onto the memory with the fidelity higher than the.
Quantum Computer Building Blocks Paola Cappellaro Quantum Engineering Group - MIT.
Samansa Maneshi, Jalani Kanem, Chao Zhuang, Matthew Partlow Aephraim Steinberg Department of Physics, Center for Quantum Information and Quantum Control,
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
Suppressing decoherence and heating with quantum bang-bang controls David Vitali and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Long-lived spin coherence in silicon with electrical readout
Holonomic quantum computation in decoherence-free subspaces Lian-Ao Wu Center for Quantum Information and Quantum Control In collaboration with Polao Zanardi.
LPS Quantum computing lunchtime seminar Friday Oct. 22, 1999.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Quantum Error Correction Michele Mosca. Quantum Error Correction: Bit Flip Errors l Suppose the environment will effect error (i.e. operation ) on our.
Single-ion Quantum Lock-in Amplifier
The Integration Algorithm A quantum computer could integrate a function in less computational time then a classical computer... The integral of a one dimensional.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
Dynamical Error Correction for Encoded Quantum Computation Kaveh Khodjasteh and Daniel Lidar University of Southern California December, 2007 QEC07.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Hybrid quantum decoupling and error correction Leonid Pryadko University of California, Riverside Pinaki Sengupta(LANL) Greg Quiroz (USC) Sasha Korotkov.
Pulse techniques for decoupling qubits from noise: experimental tests Bang-bang decoupling 31 P nuclear spins Low-decoherence electron-spin qubits and.
Autonomous Quantum Error Correction Joachim Cohen QUANTIC.
Tomáš Bzdušek QSIT student presentation 28 th november 2011.
Quantum Devices (or, How to Build Your Own Quantum Computer)
Quantum Error Correction and Fault-Tolerance Todd A. Brun, Daniel A. Lidar, Ben Reichardt, Paolo Zanardi University of Southern California.
Quantum systems for information technology, ETHZ
Dynamical decoupling in solids
Imperial College London Institute for Mathematical Sciences & Quantum Optics and Laser Science Group Blackett Laboratory Imperial College London
CENTER FOR NONLINEAR AND COMPLEX SYSTEMS Giulio Casati - Istituto Nazionale di Fisica della Materia, and Universita’ dell’Insubria -National University.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Global control, perpetual coupling and the like Easing the experimental burden Simon Benjamin, Oxford. EPSRC. DTI, Royal Soc.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Quantum Computers by Ran Li.
Quantum Computing and Nuclear Magnetic Resonance Jonathan Jones EPS-12, Budapest, August Oxford Centre for Quantum Computation
Quantum Convolutional Coding Techniques Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering, University of.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Hybrid quantum error prevention, reduction, and correction methods Daniel Lidar University of Toronto Quantum Information & Quantum Control Conference.
Large scale quantum computing in silicon with imprecise qubit couplings ArXiv : (2015)
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
On Decoherence in Solid-State Qubits Josephson charge qubits Classification of noise, relaxation/decoherence Josephson qubits as noise spectrometers Decoherence.
Pulse : Recvr: AB A: DQF-COSY B: Treat only the last pulse Pulse: ; Rcvr:  Essentially the same as the DQF COSY. We can.
B O S C H U N D S I E M E N S H A U S G E R Ä T E G R U P P E Utilizing error correction for quantum sensing Yuval Vinkler Hebrew University of Jerusalem.
Violation of a Bell’s inequality in time with weak measurement SPEC CEA-Saclay IRFU, CEA, Jan A.Korotkov University of California, Riverside A. Palacios-Laloy.
Role of entanglement in extracting information on quantum processes
IRG-3 Electron Spin Coherence of Shallow Donors in Germanium (DMR )
the illusion of the Heisenberg scaling
Linear Quantum Error Correction
Many-body Floquet systems & time-crystalline order
|  Introduction to Quantum Computation Bruce Kane
On the collapses and revivals in the Rabi Hamiltonian
Strong coupling of a superradiant spin ensemble B. C. Rose, A. M
Ultraprecise Clock Synchromnization Via Distant Entanglement
Leon Camenzind 11/08/17.
The Grand Unified Theory of Quantum Metrology
Decoherence at optimal point: beyond the Bloch equations
Many-body Spin Echo and Quantum Walks in Functional Spaces
PI: Leonid Pryadko (Physics)
The Grand Unified Theory of Quantum Metrology
Geometric Phase in composite systems
10.5 Fourier Transform NMR Instrumentation
Quantum Computing: the Majorana Fermion Solution
Nuclear Magnetic Resonance
NV centers in diamond: from quantum coherence to nanoscale MRI
High spin physics- achievements and perspectives
Hole Spin Decoherence in Quantum Dots
Using Randomness for Coherent Quantum Control
NMR relaxation. BPP Theory
by I. Lovchinsky, A. O. Sushkov, E. Urbach, N. P. de Leon, S. Choi, K
Norm Moulton LPS 15 October, 1999
by I. Lovchinsky, A. O. Sushkov, E. Urbach, N. P. de Leon, S. Choi, K
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

B O S C H U N D S I E M E N S H A U S G E R Ä T E G R U P P E Frequency locking and error correction based sensing schemes Alex Retzker HUJI PSAS Tuvia Gefen, Nati aharon, Itsik Cohen, Daniel Cohen, Thomas Unden, Prya balasubramanian, Daniel Louzon, Martin Plenio, J.M Cai,Mikhail Lukin, L. Cohen, Y. Pilnyak, D. Istrati, H. S. Eisenberg Christof Wunderlich, Ingo Baumgart and Fedor Jelezko.

Quantum Sensing Quantum sensing scales as: Thus dynamical decoupling is used to increase the coherence time Challenge: increasing the coherence time while reading the signal

Hahn Echo: PSAS2016I I Slide: 3

Carr Purcell – CP: PSAS2016I I Slide: 4 A sequence of echos, i.e., of π pulses focuses the polarization for a long time y z x

Carr Purcell – CP: PSAS2016I I Slide: 5 A sequence of echos, i.e., of π pulses focuses the polarization for a long time y z x π+δΦ y z x 2 δΦ

Improved CPMG: PSAS2016I I Slide: 6 y z x π+δΦ y z x

PSAS2016 I I Slide: 7 Coherent control Timoney et, al., 2007

PSAS2016 I I Folie: 8 Working with ensembles A strong pulse in needed to work on all systems identically

PSAS2016 I I Folie: 9 Power issues The ratio between continuous and pulsed:

PSAS2016 I I Folie: 10 Dynamical Decoupling: Spin locking Dephasing(T2) Rate : Flipping(T1) Rate :

Cohernce time of dressed states Coherence time   20 ms PSAS2016 I I Folie: 11 Data from Wunderlich group

Single drive PSAS I I Folie: 12 Cai et al., New J. Phys (2012)

Carr Purcell – CP: PSAS2016I I Slide: 13 A sequence of echos, i.e., of π pulses focuses the polarization for a long time y z x π+δΦ y z x 2 δΦ

Stable Qubit  Sequential continuous dynamical decoupling PSAS I I Folie: 14 Cai et al., New J. Phys (2012) Plus non-rotating drive terms

PSAS2016 I I Slide: 15 Coherent control Timoney et, al., 2007

Single drive PSAS I I Folie: 16 Cai et al., New J. Phys (2012)

PSAS I I Folie: 17 But if we have more levels maybe we could so something better

Dynamical Decoupling: multi level struture Dephasing(T2) Rate : Quantum Computing-> Sensing N. Timoney, I. Baumgart, M. Johanning, A. F. Varon, Ch. Wunderlich, M. B. Plenio, A. R Nature 476, 185 (2011)

Robust magnetometry Measured Sensitivity by Wunderlich: signal The signal is locked to the frequency and not to Rabi frequency I. Baumgart, J.M. Cai, M. B. Plenio, A. R, C. Wunderlich PRL (2016)

Generalisation to N levels N. Aharon, M. Drewsen, and A.R, PRL 111, (2013) PSAS2016 I I Folie: 20

For NVs PSAS2016 I N. Aharon, I. Cohen, AR in preparation

Dressed states PSAS2016 I Robust qubit (a) (b) N. Aharon, I. Cohen, AR in preparation

Pure dephasing PSAS2016 I N. Aharon, I. Cohen, AR in preparation

With drive of 100MHz PSAS2016 I N. Aharon, I. Cohen, AR in preparation

PSAS I I Folie: 25 Good and bad levels – Error correction Two ‘good’ levels Two ‘sensing’ levels G. Arrad, Y. Vinkler, D. Aharonov, A. R, PRL 112, (2014)

PSAS I I Folie: 26 Good and bad levels Weak coupling to noise Weak coupling to signal Strong coupling to noise Strong coupling to signal Weak coupling to noise Strong coupling to signal G. Arrad, Y. Vinkler, D. Aharonov, A. R, PRL 112, (2014)

General Idea of error correction for quantum computing Code error1 error2 Error N Logical operation PSAS2016 I G. Arrad, Y. Vinkler, D. Aharonov, A. R, PRL 112, (2014)

Error correction – majority vote Regular majority vote code Error1 Error2 Error3

General Idea of error correction for quantum sensing Code error1 error2 Error N Sensing signal However, the sensing signal is weak/slow and the logical operation is strong/fast PSAS2016 I

Advantage – use of protected qubits Code Sensing qubit Good qubits PSAS2016 I

Example: fighting dissipation Using dynamical decoupling have to be faster than Using error correction have to be faster than PSAS2016 I

Example: fighting T1 Using dynamical decoupling have to be faster than Using error correction have to be faster than PSAS2016 I

PSAS2016 I I Folie: 33 Quantum error correction for sensing Sensing qubit Robust qubits Instead of the nine/five qubit code a simpler code with good qubits can be designed The sensing signal is weak/slow and the logical operation is strong/fast

Initial state: Free evolution: Error: Cnot-Gate: Laser: Cnot-Gate: Quantum error correction for bit flip error T. Unden,..A. R, F. Jelezko PRL (2016)

Electron and nuclear spin PSAS2016 I T. Unden,..A. R, F. Jelezko PRL (2016)

With drive of 100MHz PSAS2016 I L. Cohen, Y. Pilnyak, D. Istrati, A. Retzker, H. S. Eisenberg Arxiv (2016)

With drive of 100MHz PSAS2016 I L. Cohen, Y. Pilnyak, D. Istrati, A. Retzker, H. S. Eisenberg Arxiv (2016)

Back to Heisenberg scaling David A. Herrera-Martí, Tuvia Gefen, Dorit Aharonov, Nadav Katz, AR Phys. Rev. Lett. 115, (2015)

Back to Heisenberg scaling Tuvia Gefen, David A. Herrera-Martí, AR Phys. Rev. A 93, (2016)

B O S C H U N D S I E M E N S H A U S G E R Ä T E G R U P P E Thanks a lot for your attention! Diadems IP (FP7) Diadems IP (FP7) CIG Career integration grant CIG Career integration grant

Hahn Echo: PSAS2016I I Slide: 41

Noise sources - mixing PSAS2016 I This state has a Part:

Dressed states – driving fields fluctuations PSAS2016 I Robust qubit

Noise sources – driving fields fluctuations PSAS2016 I The next order shift: Then the noise is:

Magnetic fluctuations PSAS2016 I The rotating frame: Stark Shift

XY8: PSAS2016I I Slide: 46 y z x π+δΦ y z x

CP + Meiboom – Gill = CPMG: PSAS2016I I Slide: 47 y z x π+δΦ y z x

Quantum Sensing of high frequency fields PSAS2016 I

Dressed states – Noise sources PSAS2016 I Deleterious noise at:

PSAS2016 I I Folie: 50 General scheme for the construction of a protected qubit subspace Robust subspace like symmetry protected subspace

Error correction – Shor’s algorithm Bit flip or a phase flip will map this to an orthogonal sub space Shor’s code: For example, phase flip of the first qubit: For example, bit flip of the first qubit:

Dressed states PSAS2016 I Robust qubit N. Aharon, I. Cohen, AR in preparation

Dressed states – Noise sources PSAS2016 I Robust qubit