IASF Bologna 1 Terrestrial Gamma-Ray Flashes Martino Marisaldi (INAF-IASF Bologna) 2 nd International Conference Frontiers in Diagnostic Technologies Laboratori.

Slides:



Advertisements
Similar presentations
RHESSI Studies of Solar Flare Hard X-Ray Polarization Mark L. McConnell 1, David M. Smith 2, A. Gordon Emslie 4, Martin Fivian 3, Gordon J. Hurford 3,
Advertisements

Lightning Imager and its Level 2 products Jochen Grandell Remote Sensing and Products Division.
Solar System Science Flares and Solar Energetic Particles Terrestrial Gamma-Ray Flashes Cosmic-ray interactions with Earth, Sun, Moon, etc. Plans: Optimization.
Terrestrial Gamma-Ray Flashes (TGFs) Observed with Fermi-GBM G. J. Fishman 1, M. S. Briggs 2, and V. Connaughton 2 -for the GBM TGF Team 1 NASA-Marshall.
U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Pitch angle evolution of energetic electrons at geosynchronous.
satelliteexperimentdetector type energy band, MeV min time resolution CGRO OSSE NaI(Tl)-CsI(Na) phoswich 0.05–10 4ms COMPTELNaI0.7–300.1s EGRET TASCSNaI(Tl)1-2001s.
F.Fuschino, F.Longo et al AGILE view on TGF F. Fuschino, F. Longo, M. Marisaldi, C. Labanti, M. Galli, G. Barbiellini on behalf of the AGILE team.
Working Group 2 - Ion acceleration and interactions.
Terrestrial Gamma-ray Flashes. Gamma Ray Astronomy Beginning started as a small budget research program in 1959 monitoring compliance with the 1963 Partial.
Terrestrial gamma-ray flashes Prepared by Morris Cohen Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global AWESOME Network.
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
1 Understanding GRBs at LAT Energies Robert D. Preece Dept. of Physics UAH Robert D. Preece Dept. of Physics UAH.
Investigations on Atmospheric Acceleration of Energetic Electrons by ERG and SCOPE Wing-Huen Ip Institutes of Space Science and Astronomy National Central.
Lightning-driven electric and magnetic fields measured in the stratosphere during the Brazil Balloon Campaign Jeremy N. Thomas (U. of Washington,
Proxy Data and VHF/Optical Comparisons Monte Bateman GLM Proxy Data Designer.
Radio emissions produced by cosmic- ray extensive air showers traversing thunderclouds Joseph R. Dwyer Department of Physics and Space Sciences Florida.
July 2004, Erice1 The performance of MAGIC Telescope for observation of Gamma Ray Bursts Satoko Mizobuchi for MAGIC collaboration Max-Planck-Institute.
1 Arecibo Synergy with GLAST (and other gamma-ray telescopes) Frontiers of Astronomy with the World’s Largest Radio Telescope 12 September 2007 Dave Thompson.
High Energy Measurements for Solar, Heliospheric, Magnetospheric, and Atmospheric Physics R. P. Lin J. Sample, A. Shih, S. Christe, S. Krucker, I. Hannah.
© 2008 The Aerospace Corporation Workshop on Coupling of Thunderstorms and Lightning to Near-Earth Space University of Corsica, June 2008 SAMPEX.
X.-X. Li, H.-H. He, F.-R. Zhu, S.-Z. Chen on behalf of the ARGO-YBJ collaboration Institute of High Energy Physics Nanjing GRB Conference,Nanjing,
S.V.Goncharov, V.V.Surkov, Pilipenko V.A.
Gamma-Ray Telescopes. Brief History of Gamma Ray Astronomy 1961 EXPLORER-II: First detection of high-energy  -rays from space 1967 VELA satelllites:
Photograph by William Biscorner The World of TGFs David M. Smith Physics Department and Santa Cruz Institute for Particle Physics University of California,
Hard X and Gamma-ray Polarization: the ultimate dimension (ESA Cosmic Vision ) or the Compton Scattering polarimetery challenges Ezio Caroli,
Fermi Observations of Gamma-ray Bursts Masanori Ohno(ISAS/JAXA) on behalf of Fermi LAT/GBM collaborations April 19, Deciphering the Ancient Universe.
GLAST's GBM Burst Trigger D. Band (GSFC), M. Briggs (NSSTC), V. Connaughton (NSSTC), M. Kippen (LANL), R. Preece (NSSTC) The Mission The Gamma-ray Large.
June, 2008Corsica TGF production altitude and time delays of the terrestrial gamma flashes – revisiting the BATSE spectra Nikolai Østgaard, Thomas.
Search for emission from Gamma Ray Bursts with the ARGO-YBJ detector Tristano Di Girolamo Universita` “Federico II” and INFN, Napoli, Italy ECRS, September.
Stochastic Wake Field particle acceleration in GRB G. Barbiellini (1), F. Longo (1), N.Omodei (2), P.Tommasini (3), D.Giulietti (3), A.Celotti (4), M.Tavani.
TGF diffuse imaging and spectra as a function of altitude and location P.H.Connell University of Valencia.
Spectrum of Gamma Rays, Produced by the Runaway Electrons G.G. Karapetyan Alikhanian National Laboratory, Armenia.
The Polarity Asymmetry of Sprite Producing Lightning: A Paradox Earle R. Williams MIT IAMAS Beijing, China August 2005.
Gamma-Ray Bursts with the ANTARES neutrino telescope S. Escoffier CNRS/CPPM, Marseille.
X-ray Emission from Thunderstorms and Lightning Joseph R. Dwyer Department of Physics and Space Sciences Florida Institute of Technology.
The Polarity Asymmetry of Sprite Producing Lightning: A Paradox Earle R. Williams MIT Multi-Scale Nature of Spark Precursors and High Altitude Lightning.
Normal text - click to edit 1 Corsica N. Ostgaard 1, J. Stadsnes 1, P. H. Connell 2 T. Gjesteland 1 1) Department of Physics and Technology, University.
Fermi GBM Observations of Gamma-Ray Bursts Michael S. Briggs on behalf of the Fermi GBM Team Max-Planck-Institut für extraterrestrische Physik NASA Marshall.
Stochastic wake field particle acceleration in Gamma-Ray Bursts Barbiellini G., Longo F. (1), Omodei N. (2), Giulietti D., Tommassini P. (3), Celotti A.
ISUAL Design Concept S. Mende. SDR 7 Jun NCKU UCB Tohoku ISUAL Design Concept S. Mende Sprite Example Sprite Image obtained by Berkeley/NCKU 1999.
Feb. 3, 2007IFC meeting1 Beam test report Ph. Bruel on behalf of the beam test working group Gamma-ray Large Area Space Telescope.
Simulation of Terrestrial Gamma Ray and Neutron Flashes (Small variations of thundercloud dipole moment) L.P. Babich, Е.N. Donskoĭ, A.Y. Kudryavtsev, M.L.
Fermi Gamma-ray Burst Monitor
32 nd ICRC –Beijing – August 11-18, 2011 Silvia Vernetto IFSI-INAF Torino, ITALY On behalf of the ARGO-YBJ collaboration Observation of MGRO J with.
Radio emissions from RHESSI TGFs A. Mezentsev 1, N. Østgaard 1, T. Gjesteland 1, K. Albrechtsen 1, M.Marisaldi 1, 2, D. Smith 3 and S. Cummer 4 (1) Birkeland.
Experimental considerations about  physics at DA  NE2 F. Anulli, D. Babusci, G. Pancheri Laboratori Nazionali di Frascati  Physics window at DA  NE2.
AGILE Data Center Activities C. Pittori (coord), F. Lucarelli, F. Verrecchia (INAF), G. Fanari (TPZ/Serco) 14 th AGILE WS, June 20-21, 2016.
Ariel Majcher Gamma-ray bursts and GRB080319B XXIVth IEEE-SPIE Joint Symposium on Photonics, Web Engineering, Electronics for Astronomy and High Energy.
for Lomonosov-GRB collaboration
AGILE as particle monitor: an update
Solar gamma-ray and neutron registration capabilities of the GRIS instrument onboard the International Space Station Yu. A. Trofimov, Yu. D. Kotov, V.
Gamma-ray Bursts (GRBs)
AE33A-0435 Lightning leader and relativistic feedback discharge models of terrestrial gamma-ray flashes Joseph R. Dwyer1, Ningyu Liu1, J. Eric Grove2,
The Crab Light Curve and Spectra from GBM: An Update
Observation of Pulsars and Plerions with MAGIC
Electron Observations from ATIC and HESS
observations of GW events Imma Donnarumma, on behalf of the AGILE Team
HARPO, a Micromegas+GEM TPC for gamma polarimetry above 1 MeV
GRM brief introduction
R. Bucˇık , K. Kudela and S. N. Kuznetsov
Gamma-Gamma Correlations in Na-22
Particle Acceleration in the Universe
Searching for GRB-GWB coincidence during LIGO science runs
CALET-CALによる ガンマ線観測初期解析
Stochastic Wake Field particle acceleration in GRB
More on Milagro Observations of TeV Diffuse Emission in Cygnus
Perspectives of GRBs registration due gamma-telescope GAMMA-400
Conditions for Production of Terrestrial Gamma Ray Flashes (TGF)
Conditions for Production of Terrestrial Gamma Ray Flashes (TGF)
Presentation transcript:

IASF Bologna 1 Terrestrial Gamma-Ray Flashes Martino Marisaldi (INAF-IASF Bologna) 2 nd International Conference Frontiers in Diagnostic Technologies Laboratori Nazionali di Frascati, November 2011 M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna M. Marisaldi 2 Outline Observational evidence Theoretical models Open questions Latest results and AGILE contributions Credit: Alan Stonebraker M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna Serendipity at play M. Marisaldi FDT2 Frascati 29/11/2011 Vela satellites '70-'80 looking down to Earth... GRB BATSE onboard CGRO 1991 – 2000 looking up to space... TGF

IASF Bologna 1992: BATSE discovery of Terrestrial Gamma-ray Flashes(TGFs) M. Marisaldi FDT2 Frascati 29/11/2011 ~ 70 TGF detected on 9 life-Years typically 100 counts/TGF Fishman et al., Science (1994)Inan et al., GRL (1996) Energy > 1MeV, harder than GRBs very bright, ~1ms duration associated to lightning

IASF Bologna 2005: RHESSI observation of TGFs up to 20 MeV M. Marisaldi FDT2 Frascati 29/11/2011 Contiuous time-tagged event list No on-board trigger logic 10– 20 TGF per month Typically counts/TGF ~800 TGFs reported in the 1 st RHESSI TGF catalog (Grefenstette et al., JGR 2009) clear association to global lightning activity One-to-one sferics correlations Smith et al., Science (2005)

IASF Bologna Progresses in TGF science M. Marisaldi FDT2 Frascati 29/11/2011 TGF discovery by BATSE RHESSI AGILE Association to lightning Cumulative spectrum Energy up to 20 MeV production altitude < 20km Fermi + ground lightning location networks Energy > 40 MeV up to ~ 100 MeV First localization in  -rays from space TGF & global lightning activity Duration ~250  s Discovery of e + /e - flashes

IASF Bologna Physical scenario: runaway electrons M. Marisaldi FDT2 Frascati 29/11/2011 Cold runaway: any electron goes relativistic Conventional breakdown: ionization > attachment Relativistic runaway regime: seed electrons get accelerated to relativistic energies Figure by V. Pasko, from “Sprites, Elves and intense lightning discharges”, ed. M. Fullekrug, Springer (2006)

IASF Bologna Physical scenario: relativistic feedback M. Marisaldi FDT2 Frascati 29/11/2011 Positron feedback (Dwyer 2008) limits the number of avalanche length before electric field quenching But feedback allows true discharge even with only a few avalanche lengths Feedback predicts correct TGF duration and approximate luminosity (courtesy D. Smith, plot by J. Dwyer)

IASF Bologna Relativistic Runaway Electron Avalanche (RREA) M. Marisaldi FDT2 Frascati 29/11/2011 Relativistic Runaway Electron Avalanche (RREA) with relativistic feedback (Dwyer 2008) Bremsstrahlung + Compton scattering RHESSI cumulative spectrum is compatible with a production altitude of km (just above tropical thunderstorms) Still hint for individual spectral variability: differences in production altitudes or viewing angle? BATSE events seem produced at higher altitude, but discrepancy is reduced if dead- time effects are properly accounted for (Grefenstette et al., 2008; Ostgaard et al., 2008; Gjesteland et al., 2010) Dwyer and Smith, GRL (2005) Carlson, Lehtinen and Inan (2007)

IASF Bologna Open questions What is the TGF maximum energy? What is the TGF angular distribution? Which lightning type? Which phase of the lightning process? Where does the acceleration takes place? How common are TGFs? What is their intensity distribution? What is the climatology of TGFs? M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna Operating TGF detectors RHESSI Fermi-GBM 12xNaI Fermi-GBM NaI GBM 2xBGO GBM BGO AGILE-MCAL AGILE GRID Data from: Smith et al. (2002), Meegan et al. (2009), Labanti et al. (2009), Tavani et al. (2009) Effective Area vs. Energy LAT ? M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna 30 CsI(Tl) bars with Photodiode readout 1400 cm 2 geometrical area ~300 cm 2 effective 1 MeV 330 keV – 100 MeV energy range 14% energy resolution 1.3 MeV 2  s timing accuracy in photon-by-photon mode Clever, fully-programmable trigger logic on time scales from 8s to 16ms, 1ms and 300  s The AGILE payload 40 cm Labanti et al., NIM A (2009): instrument paper Fuschino et al., NIM A (2008): trigger logic M. Marisaldi Marisaldi et al., A&A (2008): GRB detections Marisaldi et al., JGR (2010): TGF detections FDT2 Frascati 29/11/2011

IASF Bologna M. Marisaldi 13 Maximum energy & spectral shape 110 TGFs 1806 photons 142  E> 10 MeV 26  E> 20 MeV Results published in Tavani et al., Phys. Rev. Letters 106, (2011) RREA cutoff powerlaw model significant detection of  >40 MeV unexplained by standard RREA model: challenge for emission models 100MV potential compatible with strong IC discharges Broken powerlaw model  = -2.7 M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna M. Marisaldi 14 Beaming angle: TGF localization from space in  -rays by AGILE GRID AGILE footprint GRID  projection GRID pointing Reverse event direction (TGF source)‏ M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna TGF in details (2010 Oct :44:55 UT)  -ray source GOES IR image ~5 minutes before TGF TRMM-LIS pass ~1 hour before TGF Credits: B. Carlson, Univ. Bergen M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna M. Marisaldi 16 Geographical distribution Event clustering at < 400 km from AGILE footprint: half cone angle of emission ~30-40° Consistency with pervious detections based on RHESSI TGFs and sferics (Cummer 2005, Cohen 2010, Hazelton 2009, Gjesteland 2011) Results published in Marisaldi et al., Phys. Rev. Letters 105, (2010) Cohen et al., GRL 2010 M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna M. Marisaldi 17 Do GRID photons come directly from the production region? Compton and pair production cross section in air become equivalent at ~25MeV: Compton interaction for low-energy GRID events cannot be ignored <3% probability to scatter above 40 km: the GRID photon tracks the source within the angular resolution km 540 km AGILE good TGF production region Compton interaction 40 km AGILE bad TGF production region Compton interaction M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna M. Marisaldi 18 Implications for beaming angle and electric field orientation at the source 50 MeV High energy photons track well the electric field orientation at the source A new tool to probe remotely the production site electric field Roussel-Doupre et al. Sp. Sci. Rev M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna Parent lightning / lightning phase M. Marisaldi FDT2 Frascati 29/11/2011 Williams et al., 2006 Lu et al., 2010 Observations by lightning location networks point toward initial phase of IC lightning at km  -rays before or after the return stroke? Measurements from space still inconclusive. On ground experiments and triggered lightning observations points toward  -ray production during leader phase (before return stroke) Cummer et al., 2011

IASF Bologna Toward a climatology of TGFs M. Marisaldi FDT2 Frascati 29/11/2011 Splitt et al., 2010 Smith et al., 2010 TGFs follow lightning distribution and ITCZ movement BUT with significant differences: TGF tend to peak at later storm phase (while Ics don’t) and there is a geographical asymmetry. Peculiar subset of lightning? Hint: water/ice mixed phase plays a role Few climatology studies yet

IASF Bologna LIS/OTD global lightning distribution (10 Years of data) 0.5 x 0.5 deg per bin Flash rate [fl/km -2 /year] MCAL exposure [Seconds per bin] (Mar 2009-Feb 2010) Trigger logic really active 2.5 x 1.0 deg [lon x lat] Lightning distribution multiplied by the MCAL exposure to direct comparison with 12 Months of AGILE TGFs LIS-OTD high resolution full climatology available at M. Marisaldi 0.68 correlation coefficient for global case BUT… 2D Kolmogorov Smirnov probability = for TGFs to be drawn from the same distribution of lightning! FDT2 Frascati 29/11/2011

IASF Bologna TGF / lightning statistical comparison M. Marisaldi Continental region 1D KS Longitude P 1D KS Latitude P 2D KS PTGF / flash ratio America Africa South East Asia All FDT2 Frascati 29/11/2011 Results published in Fuschino et al., Geophys. Res. Lett. 38, L14806 (2011)

IASF Bologna M. Marisaldi 23 Summary TGFs are the manifestation of the highest-energy natural particle accelerators on Earth Role of the RREA process widely accepted, but difficult to explain recent spectral results (E ~100 MeV) Acceleration sites correlated to IC lightning at km altitude, possibly during leader formation Climatology studies show discrepancies with lightning distribution: possible sub-class of lightning? AGILE is giving an important contribution to TGF science: Energy spectrum up to ~100 MeV First TGF localization in  -rays Highest TGF detection rate surface density: TGF / lightning climatology study M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna What next? M. Marisaldi FDT2 Frascati 29/11/2011 ASIM ESA mission >= 2014 TARANIS CNES mission >= 2015 But AGILE, RHESSI and Fermi still have a lot more to say!

IASF Bologna THANK YOU! Credit: Alan Stonebraker M. Marisaldi First AGILE TGF detections: Marisaldi et al., JGR 115, A00E13 (2010) TGF  -ray localization: Marisaldi et al., Phys Rev Lett 105, (2010) TGF high-energy spectrum: Tavani et al., Phys Rev Lett 106, (2011) AGILE TGFs & lightning activity: Fuschino et al., GRL 38, L14806(2011) FDT2 Frascati 29/11/2011

IASF Bologna M. Marisaldi 26 Extra slides M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna M. Marisaldi 27 Imaging TGFs in gamma rays Search for GRID events in temporal coincidence with 119 MCAL TGFs detected between Jun – Dec   significance 13 GRID events within 2 ms from TGFs T0! M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna M. Marisaldi 28 MCAL TGF detection rate > 250 class A TGFs + ~130 class B TGFs since June TGFs Published in M. Marisaldi et al., J. Geoph. Res., 115, A00E13, ms trigger onset After entering Spinning mode ~10 TGF/month since Mar.'09 ~10 class A TGF/month ~ 5 class B TGF/month 24 months 1 st AGILE TGF catalog in preparation M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna M. Marisaldi 29 The AGILE TGF sample Average properties A AND B class: Number of counts = 14 +/- 9 Duration = (0.8 +/- 0.4) ms Energy = (4.0 +/- 1.7) MeV M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna Basic properties M. Marisaldi Class A (old) Class B FDT2 Frascati 29/11/2011

IASF Bologna High energy events M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna M. Marisaldi Longitude and local time RHESSI AGILE class A AGILE class B FDT2 Frascati 29/11/2011

IASF Bologna MCAL high energy calibration Giuliani et al., ApJL 708 (2010) L84 GRB promptExtended emission M. Marisaldi In flight MCAL data GRID UL GRID data FDT2 Frascati 29/11/2011

IASF Bologna M. Marisaldi 34 Why AGILE is good for TGF science? MCAL energy range is extended up to 100 MeV: probing the high energy tail of the TGF spectrum Efficient trigger at ms and sub-ms time scale (the TGF time scale): not biased toward brightest events segmented independent detectors: low dead time and pile-up photon-by-photon data download for triggered events with 2  s time resolution <100  s absolute timing accuracy: mandatory for sferics correlation AGILE orbit at 2.5° inclination is optimal for mapping the equatorial region, where most of the events take place, with unprecedented exposure M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna M. Marisaldi 35 MCAL Burst Trigger Logic Long (SW evaluated) time windows: 64ms, 256ms, 1.024s, 8.192s 4 spatial zones and 3 energy ranges Short (HW evaluated) time windows: sub-millisecond, 1ms, 16ms First trigger logic at ~1ms time scale Very flexible: more than 2000 parameters for full configuration; dedicated look-up tables to accept/reject triggers Current threshold settings: 16ms: >22 counts 1ms: >10 counts 293  s: > 8 counts M. Marisaldi FDT2 Frascati 29/11/2011

IASF Bologna M. Marisaldi 36 Trigger selection Key parameter: Hardness Ratio HR = (n. evt E>1.4 MeV) / (n. evt. E<1.4 MeV)‏ Selection criteria to reject known instrumental triggers: HR > 0.5 Known instrumental triggers All other triggers M. Marisaldi FDT2 Frascati 29/11/2011