© 2006 Pearson Addison-Wesley. All rights reserved14 B-1 Chapter 14 (continued) Graphs.

Slides:



Advertisements
Similar presentations
Graphs CSC 220 Data Structure. Introduction One of the Most versatile data structures like trees. Terminology –Nodes in trees are vertices in graphs.
Advertisements

Data Structures Using C++
3.3 Spanning Trees Tucker, Applied Combinatorics, Section 3.3, by Patti Bodkin and Tamsen Hunter.
Graphs Chapter Chapter Contents Some Examples and Terminology Road Maps Airline Routes Mazes Course Prerequisites Trees Traversals Breadth-First.
Graphs Chapter 12. Chapter Objectives  To become familiar with graph terminology and the different types of graphs  To study a Graph ADT and different.
Graphs Chapter 20 Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013.
Chapter 8, Part I Graph Algorithms.
Graphs Chapter 30 Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved X.
Graph Search Methods Spring 2007 CSE, POSTECH. Graph Search Methods A vertex u is reachable from vertex v iff there is a path from v to u. A search method.
© 2006 Pearson Addison-Wesley. All rights reserved14 A-1 Chapter 14 excerpts Graphs (breadth-first-search)
Data Structures Using C++
Data Structures Using Java1 Chapter 11 Graphs. Data Structures Using Java2 Chapter Objectives Learn about graphs Become familiar with the basic terminology.
Discrete Structures Lecture 13: Trees Ji Yanyan United International College Thanks to Professor Michael Hvidsten.
CS202 - Fundamental Structures of Computer Science II
CHAPTER 13 Graphs DATA ABSTRACTION AND PROBLEM SOLVING WITH C++ WALLS AND MIRRORS Third Edition Frank M. Carrano Janet J. Prichard Data Abstraction and.
ITEC200 – Week 12 Graphs. 2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study.
Graph Algorithms: Minimum Spanning Tree We are given a weighted, undirected graph G = (V, E), with weight function w:
Graphs Chapter 12. Chapter 12: Graphs2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study a Graph.
Spring 2010CS 2251 Graphs Chapter 10. Spring 2010CS 2252 Chapter Objectives To become familiar with graph terminology and the different types of graphs.
© 2006 Pearson Addison-Wesley. All rights reserved14 B-1 Chapter 14 (continued) Graphs.
Fall 2007CS 2251 Graphs Chapter 12. Fall 2007CS 2252 Chapter Objectives To become familiar with graph terminology and the different types of graphs To.
Graphs Chapter 20 Data Structures and Problem Solving with C++: Walls and Mirrors, Frank Carrano, © 2012.
Graphs Chapter 28 Copyright ©2012 by Pearson Education, Inc. All rights reserved.
Data Structures Using C++ 2E
© 2006 Pearson Addison-Wesley. All rights reserved14 A-1 Chapter 14 Graphs.
Chapter 14 Graphs. © 2004 Pearson Addison-Wesley. All rights reserved Terminology G = {V, E} A graph G consists of two sets –A set V of vertices,
COSC 2007 Data Structures II Chapter 14 Graphs III.
Module 5 – Networks and Decision Mathematics Chapter 23 – Undirected Graphs.
Graphs. Definitions A graph is two sets. A graph is two sets. –A set of nodes or vertices V –A set of edges E Edges connect nodes. Edges connect nodes.
Data Abstraction and Problem Solving with JAVA Walls and Mirrors Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley Data Abstraction and Problem.
Graphs. Graphs Similar to the graphs you’ve known since the 5 th grade: line graphs, bar graphs, etc., but more general. Those mathematical graphs are.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver Chapter 13: Graphs Data Abstraction & Problem Solving with C++
Graphs Part II Lecture 7. Lecture Objectives  Topological Sort  Spanning Tree  Minimum Spanning Tree  Shortest Path.
1 Spanning Trees Longin Jan Latecki Temple University based on slides by David Matuszek, UPenn, Rose Hoberman, CMU, Bing Liu, U. of Illinois, Boting Yang,
COSC 2007 Data Structures II
Graphs Chapter 12. Chapter 12: Graphs2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study a Graph.
© 2006 Pearson Addison-Wesley. All rights reserved 14 A-1 Chapter 14 Graphs.
Graphs Upon completion you will be able to:
Chapter 20: Graphs. Objectives In this chapter, you will: – Learn about graphs – Become familiar with the basic terminology of graph theory – Discover.
Graph Searching CSIT 402 Data Structures II. 2 Graph Searching Methodology Depth-First Search (DFS) Depth-First Search (DFS) ›Searches down one path as.
Main Index Contents 11 Main Index Contents Graph Categories Graph Categories Example of Digraph Example of Digraph Connectedness of Digraph Connectedness.
1 GRAPHS – Definitions A graph G = (V, E) consists of –a set of vertices, V, and –a set of edges, E, where each edge is a pair (v,w) s.t. v,w  V Vertices.
Brute Force and Exhaustive Search Brute Force and Exhaustive Search Traveling Salesman Problem Knapsack Problem Assignment Problem Selection Sort and Bubble.
Review Graph Directed Graph Undirected Graph Sub-Graph Spanning Sub-Graph Degree of a Vertex Weighted Graph Elementary and Simple Path Link List Representation.
Graphs Spring 2016CS202 - Fundamental Structures of Computer Science II1 Initially prepared by Dr. Ilyas Cicekli; improved by various Bilkent CS202 instructors.
Graph Search Applications, Minimum Spanning Tree
Graphs Chapter 20.
CS202 - Fundamental Structures of Computer Science II
Graphs Representation, BFS, DFS
Graphs CS Data Structures Mehmet H Gunes
Csc 2720 Instructor: Zhuojun Duan
CS202 - Fundamental Structures of Computer Science II
CS202 - Fundamental Structures of Computer Science II
CS120 Graphs.
More Graph Algorithms.
Comp 245 Data Structures Graphs.
Spanning Trees Longin Jan Latecki Temple University based on slides by
Graph Algorithm.
Graphs Representation, BFS, DFS
Graphs Chapter 13.
Graphs.
Chapter 11 Graphs.
Spanning Trees Longin Jan Latecki Temple University based on slides by
Chapter 14 Graphs © 2006 Pearson Addison-Wesley. All rights reserved.
Weighted Graphs & Shortest Paths
GRAPHS G=<V,E> Adjacent vertices Undirected graph
Spanning Trees Longin Jan Latecki Temple University based on slides by
Chapter 14 Graphs © 2011 Pearson Addison-Wesley. All rights reserved.
GRAPH – Definitions A graph G = (V, E) consists of
INTRODUCTION A graph G=(V,E) consists of a finite non empty set of vertices V , and a finite set of edges E which connect pairs of vertices .
Presentation transcript:

© 2006 Pearson Addison-Wesley. All rights reserved14 B-1 Chapter 14 (continued) Graphs

© 2006 Pearson Addison-Wesley. All rights reserved14 B-2 Depth-First Search Depth-first search (DFS) traversal –Proceeds along a path from v as deeply into the graph as possible before backing up –Does not completely specify the order in which it should visit the vertices adjacent to v –A last visited, first explored strategy

© 2006 Pearson Addison-Wesley. All rights reserved5 B-3 Breadth-First Search Breadth-first search (BFS) traversal –Visits every vertex adjacent to a vertex v that it can before visiting any other vertex –A first visited, first explored strategy –An iterative form uses a queue –A recursive form is possible, but not simple

© 2006 Pearson Addison-Wesley. All rights reserved5 B-4 Implementing a BFS Iterator Class Using the JCF BFSIterator class uses the ListIterator class –As a queue to keep track of the order the vertices should be processed BFSIterator constructor –Initiates methods used to determine BFS order of vertices for the graph Graph is searched by processing vertices from each vertex’s adjacency list –In the order that they were pushed onto the queue

© 2006 Pearson Addison-Wesley. All rights reserved14 B-5 Applications of Graphs: Topological Sorting Topological order –A list of vertices in a directed graph without cycles such that vertex x precedes vertex y if there is a directed edge from x to y in the graph –There may be several topological orders in a given graph Topological sorting –Arranging the vertices into a topological order

© 2006 Pearson Addison-Wesley. All rights reserved14 B-6 Topological Sorting Figure The graph in Figure arranged according to the topological orders a) a, g, d, b, e, c, f and b) a, b, g, d, e, f, c Figure A directed graph without cycles

© 2006 Pearson Addison-Wesley. All rights reserved14 B-7 Topological Sorting Simple algorithms for finding a topological order –topSort1 Find a vertex that has no successor Remove from the graph that vertex and all edges that lead to it, and add the vertex to the beginning of a list of vertices Add each subsequent vertex that has no successor to the beginning of the list When the graph is empty, the list of vertices will be in topological order

© 2006 Pearson Addison-Wesley. All rights reserved14 B-8 Topological Sorting Simple algorithms for finding a topological order (Continued) –topSort2 A modification of the iterative DFS algorithm Strategy –Push all vertices that have no predecessor onto a stack –Each time you pop a vertex from the stack, add it to the beginning of a list of vertices –When the traversal ends, the list of vertices will be in topological order

© 2006 Pearson Addison-Wesley. All rights reserved14 B-9 Spanning Trees A tree –An undirected connected graph without cycles A spanning tree of a connected undirected graph G –A subgraph of G that contains all of G’s vertices and enough of its edges to form a tree To obtain a spanning tree from a connected undirected graph with cycles –Remove edges until there are no cycles

© 2006 Pearson Addison-Wesley. All rights reserved14 B-10 Spanning Trees You can determine whether a connected graph contains a cycle by counting its vertices and edges –A connected undirected graph that has n vertices must have at least n – 1 edges –A connected undirected graph that has n vertices and exactly n – 1 edges cannot contain a cycle –A connected undirected graph that has n vertices and more than n – 1 edges must contain at least one cycle

© 2006 Pearson Addison-Wesley. All rights reserved14 B-11 Spanning Trees Figure Connected graphs that each have four vertices and three edges

© 2006 Pearson Addison-Wesley. All rights reserved14 B-12 The DFS Spanning Tree To create a depth-first search (DFS) spanning tree –Traverse the graph using a depth-first search and mark the edges that you follow –After the traversal is complete, the graph’s vertices and marked edges form the spanning tree

© 2006 Pearson Addison-Wesley. All rights reserved14 B-13 The BFS Spanning Tree To create a breath-first search (BFS) spanning tree –Traverse the graph using a bread-first search and mark the edges that you follow –When the traversal is complete, the graph’s vertices and marked edges form the spanning tree

© 2006 Pearson Addison-Wesley. All rights reserved14 B-14 Minimum Spanning Trees Minimum spanning tree –A spanning tree for which the sum of its edge weights is minimal Prim’s algorithm –Finds a minimal spanning tree that begins at any vertex –Strategy Find the least-cost edge (v, u) from a visited vertex v to some unvisited vertex u Mark u as visited Add the vertex u and the edge (v, u) to the minimum spanning tree Repeat the above steps until there are no more unvisited vertices

© 2006 Pearson Addison-Wesley. All rights reserved14 B-15 Shortest Paths Shortest path between two vertices in a weighted graph –The path that has the smallest sum of its edge weights Dijkstra’s shortest-path algorithm –Determines the shortest paths between a given origin and all other vertices –Uses A set vertexSet of selected vertices An array weight, where weight[v] is the weight of the shortest (cheapest) path from vertex 0 to vertex v that passes through vertices in vertexSet

© 2006 Pearson Addison-Wesley. All rights reserved14 B-16 Circuits A circuit –A special cycle that passes through every vertex (or edge) in a graph exactly once Euler circuit –A circuit that begins at a vertex v, passes through every edge exactly once, and terminates at v –Exists if and only if each vertex touches an even number of edges Figure a) Euler’s bridge problem and b) its multigraph representation

© 2006 Pearson Addison-Wesley. All rights reserved14 B-17 Some Difficult Problems Three applications of graphs –The traveling salesperson problem –The three utilities problem –The four-color problem A Hamilton circuit –Begins at a vertex v, passes through every vertex exactly once, and terminates at v

© 2006 Pearson Addison-Wesley. All rights reserved14 B-18 Summary The two most common implementations of a graph are the adjacency matrix and the adjacency list Graph searching –Depth-first search goes as deep into the graph as it can before backtracking –Bread-first search visits all possible adjacent vertices before traversing further into the graph Topological sorting produces a linear order of the vertices in a directed graph without cycles

© 2006 Pearson Addison-Wesley. All rights reserved14 B-19 Summary Trees are connected undirected graphs without cycles –A spanning tree of a connected undirected graph is a subgraph that contains all the graph’s vertices and enough of its edges to form a tree A minimum spanning tree for a weighted undirected graph is a spanning tree whose edge- weight sum is minimal The shortest path between two vertices in a weighted directed graph is the path that has the smallest sum of its edge weights

© 2006 Pearson Addison-Wesley. All rights reserved14 B-20 Summary An Euler circuit in an undirected graph is a cycle that begins at vertex v, passes through every edge in the graph exactly once, and terminates at v A Hamilton circuit in an undirected graph is a cycle that begins at vertex v, passes through every vertex in the graph exactly once, and terminates at v