NSCL Proton Detector David Perez Loureiro September 14 th 2015.

Slides:



Advertisements
Similar presentations
General Characteristics of Gas Detectors
Advertisements

Developments of micromegas detector at CERN/Saclay
1 MUON TRACKER FOR CBM experiment Murthy S. Ganti, VEC Centre Detector Choice.
Light and charge collection with a new Micromegas-TPC Light and charge collection with a new Micromegas-TPC Leila Ounalli Neuchâtel University CHIPP workshop.
Time Projection Chamber
Micro MEsh GASeous Detectors (MicroMegas)
Beam tests of Fast Neutron Imaging in China L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang 2, X.
Maximilien Chefdeville NIKHEF, Amsterdam RD51, Amsterdam 17/04/2008
Beijing, August 18, 2004 P. Colas - Micromegas for HEP 1 Recent developments of Micromegas detectors for High Energy Physics Principle of operationPrinciple.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
E-field calculations for the TPC/HBD N. Smirnov Upgrade Working Group Meeting 05/13/03, BNL.
Prototype TPC Tests C. Lu 12/9/98 V = 0. Gas gain test for the low pressure chamber The chamber is constructed with the following parameters: D anode.
Proportional Counters
D. Peterson, “ILC Detector Work”, Cornell Group Meeting, 4-October ILC Detector Work This project is supported by the US National Science Foundation.
D. Peterson, “The Cornell/Purdue TPC”, ALCPG, Snowmass, 23-August The Cornell/Purdue TPC Information available at the web site:
Detectors. Measuring Ions  A beam of charged particles will ionize gas. Particle energy E Chamber area A  An applied field will cause ions and electrons.
Astrophysics Detector Workshop – Nice – November 18 th, David Attié — on behalf of the LC-TPC Collaboration — Micromegas TPC Large.
Detector R & D plan Detector Development plan Detector Simulations Conclusion SINP/VECC Meeting High Energy Physics Group, BHU.
GainEnergy resolution DIRECTION DES SCIENCES DE LA MATIERE LABORATOIRE DE RECHERCHE SUR LES LOIS FONDAMENTALES DE L’UNIVERS CENTRE DE SACLAY Contact :
Fabio Sauli-CERN 1 IEEE-NSS Rome 04 F. Sauli, T. Meinschad, L. Musa, L. Ropelewski CERN, GENEVA, SWITZERLAND PHOTON DETECTION AND LOCALIZATION WITH THE.
GEM: A new concept for electron amplification in gas detectors Contents 1.Introduction 2.Two-step amplification: MWPC combined with GEM 3.Measurement of.
Sheffield : R. Hollingworth, D. Tovey R.A.L. : R.Luscher Development of Micromegas charge readout for two phase Xenon based Dark Matter detectors Contents:
Orsay, January 12, 2005P. Colas - Resistive anode Micromegas1 Dan Burke 1, P. Colas 2, M. Dixit 1, I. Giomataris 2, V. Lepeltier 3, A. Rankin 1, K. Sachs.
RESEARCH and DEVELOPMENT for CBM (at LHE JINR) Yu.V. Zanevsky Laboratory of High Energies JINR, Dubna - NEW INFRASTRUCTURE - FAST GAS DETECTORS - DIPOLE.
EPS-HEP 2015, Vienna. 1 Test of MPGD modules with a large prototype Time Projection Chamber Deb Sankar Bhattacharya On behalf of.
Micromegas TPC Beam Test Result H.Kuroiwa (Hiroshima Univ.) Collaboration with Saclay, Orsay, Carlton, MPI, DESY, MSU, KEK, Tsukuba U, TUAT, Kogakuin U,
F.Murtas1IMAGEM DDG GEM technology for X-ray and Gamma imaging IMAGEM l Detector setup l First results on X-ray imaging l First results on Gamma ray imaging.
Experimental and Numerical studies on Bulk Micromegas SINP group in RD51 Applied Nuclear Physics Division Saha Institute of Nuclear Physics Kolkata, West.
15th RD51 Collaboration Meeting 18 – 20 March 2015 CERN On the way to sub-100ps timing with Micromegas T. Papaevangelou IRFU / CEA Saclay.
Atsuhiko Ochi Kobe University
Studies of the possibility to use of a Gas Pixel Detector (GPD) as a fast track trigger device George Bashindzhagyan (Speaker,
A TPC for ILC CEA/Irfu, Apero, D S Bhattacharya, 19th June Deb Sankar Bhattacharya D.Attie, P.Colas, S. Ganjour,
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
Summer Student Session, 11/08/2015 Sofia Ferreira Teixeira Summer Student at ATLAS-PH-ADE-MU COMSOL simulation of the Micromegas Detector.
A.Ochi*, Y.Homma, T.Dohmae, H.Kanoh, T.Keika, S.Kobayashi, Y.Kojima, S.Matsuda, K.Moriya, A.Tanabe, K.Yoshida Kobe University PSD8 Glasgow1st September.
Proportional chambers with cathode readout in high particle flux environment Michał Dziewiecki.
The BoNuS Detector: A Radial Time Projection Chamber for tracking Spectator Protons Howard Fenker, Jefferson Lab This work was partially supported by DOE.
On behalf of the LCTPC collaboration VCI13, February 12th, 2013 Large Prototype TPC using Micro-Pattern Gaseous Detectors  David Attié 
T. Zerguerras- RD51 WG Meeting- CERN - February Single-electron response and energy resolution of a Micromegas detector T. Zerguerras *, B.
A.Ochi Kobe University MPGD2009 Crete 13 June 2009.
Group Meeting TPC 的基本原理 S.C.CHO.. TPC 的介紹 ionization electrons drift  wire chambers  avalanches position dependence of the induced signal  the point.
Single GEM Measurement Matteo Alfonsi,Gabriele Croci and Bat-El Pinchasik June 25 th 2008 GDD Meeting 1.
Endplate meeting – September 13, Gas issues for a Micromegas TPC for the Future Linear Collider David Attié D. Burke; P. Colas;
The digital TPC: the ultimate resolution P. Colas GridPix: integrated Timepix chips with a Micromegas mesh.
Wenxin Wang (D. Attié, P. Colas, E. Delagnes, Yuanning Gao, Bitao Hu, Bo Li, Yulan Li, M. Riallot, Xiaodong Zhang)
TPC R3 B R3B – TPC Philippe Legou Krakow, February nd
Vienna Conference on Instrumentation – February 27, D. Attié, A. Bellerive, K. Boudjemline, P. Colas, M. Dixit, A. Giganon,
Gossip : Gaseous Pixels Els Koffeman (Nikhef/UvA) (Harry van der Graaf, Jan Timmermans, Jan Visschers, Maximilien Chefdeville, Vladimir Gromov, Ruud Kluit,
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
R&D activities on a double phase pure Argon THGEM-TPC A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P. Otiougova, F. Resnati,
First results from tests of gaseous detectors assembled from resistive meshes P. Martinengo 1, E. Nappi 2, R. Oliveira 1, V. Peskov 1, F. Pietropaola 3,
A Micromegas TPC for the ILC. 2 Introduction: Micromegas & TPC I. Micromegas ILC-TPC ILC & LP-TPC Beam test with Micromegas modules Test bench Ion backflow.
TPC for 4-th concept S.Popescu IFIN-HH, Bucharest.
GEM and MicroMegas R&D Xiaomei Li Science and Technology
Large Prototype TPC using Micro-Pattern Gaseous Detectors
Part-V Micropattern gaseous detectors
High-Resolution Micromegas Telescope for Pion- and Muon-Tracking
Large TPCs for HEP ILC-TPC & Fast Neutron detector
Single GEM Measurement
Updates on the Micromegas + GEM prototype
WG1 Task2 New structures, new designs, new geometries
Micropattern Gas Detectors
Micromegas module for ILC-TPC
TPC Paul Colas Technical meeting, Lyon.
Ionization detectors ∆
PHOTON DETECTION AND LOCALIZATION WITH THE
Dan Burke1, P. Colas2, M. Dixit1, I. Giomataris2, V. Lepeltier3, A
MWPC’s, GEM’s or Micromegas for AD transfer and experimental lines
TPC chamber for Medipix2/TimePix
réponse d’un détecteur Micromegas
Presentation transcript:

NSCL Proton Detector David Perez Loureiro September 14 th 2015

Conceptual Design

MicroMEGAS Detectors Drift Region Particles ionize the gas along their trajectories Electrons drift to anode pads under an applied field (~100 V/cm) Amplification Region Avalanche multiplication Signal induced in readout pads Fast timing, robust, cost effective, good energy resolution 04/25/2014 HV 1 HV 2 E V/cm E 2 50 kV/cm 30 cm 100  m Cathode MicroMesh Drift Region Amplification Region Readout Pad  e p e-e- e-e- e-e- e-e- Y. Giomataris et al. Nucl. Instr. and Meth. A, 376 (1996), p. 29 e-e-

83 equipotential strips (3mm wide) 0.5 mm gap Kapton layer (0.3 mm) 1.5cm 3cm 1cm Gating Grid Corona Ring 5mm radius 14cm Variable Ring Variable ring allows to change the field lines in the region near the mesh placed at 5mm from micromesh

Electric field below 5kV/cm. Safe for sparking Ar-iso 2.5% 1 atm 1cm V B = 5981 V Ar-iso 5% 1 atm 1cm V B = 7323 V Ar-iso 10% 1 atm 1cm V B = 9611 V

E 200 V   V 0 V +V+V -V-V +V+V Gating grid: Allows to control the amount of electrons reaching the amplification area

Cathode KattonKatton Some tabs in the Kapton layer of the cage will hold it to the cathode and the Gating grid frame with screws GG frame KattonKatton Bottom view of cathode