Simulation / reconstruction with GEMs at DAC 22.06.2016 A.Zinchenko, A.Kapishin, V.Vasendina for the collaboration VBLHEP, JINR, Dubna,

Slides:



Advertisements
Similar presentations
Proposal for a new design of LumiCal R. Ingbir, P. Ruzicka, V. Vrba October 07 Malá Skála.
Advertisements

1 Geometry layout studies of the RICH detector in the CBM experiment Elena Belolaptikova Dr. Claudia Hoehne Moscow State Institute of Radioengineering,
12 th CBM Collaboration Meeting October 13-18, 2008, JINR, Dubna A. Zinchenko 1 (L.Naumann 2, D.Peshekhonov 1, V.Peshekhonov 1 ) 1 VBLHEP, JINR, Dubna.
7 Nov 2002Niels Tuning - Vertex A vertex trigger for LHCb The trigger for LHCb ….. and the use of the Si vertex detector at the first and second.
Pair Spectrometer Design Optimization Pair Spectrometer Design Optimization A. Somov, Jefferson Lab GlueX Collaboration Meeting September
The LHCb Inner Tracker LHCb: is a single-arm forward spectrometer dedicated to B-physics acceptance: (250)mrad: The Outer Tracker: covers the large.
D 0  K -,  + reconstruction with CBM STS detector I.Vassiliev (GSI) CBM collaboration meeting 06-Oct-04 Simulation tools (cbmroot) & geometry Signal.
STS Simulations Anna Kotynia 15 th CBM Collaboration Meeting April , 2010, GSI 1.
1 J.M. Heuser et al. CBM Silicon Tracker Requirements for the Silicon Tracking System of CBM Johann M. Heuser, M. Deveaux (GSI) C. Müntz, J. Stroth (University.
J.M. Heuser — CBM Silicon Tracker 1 Johann M. Heuser, GSI Darmstadt CBM Collaboration Meeting JINR Dubna, 15 October 2008 CBMCBM Review of the first in-beam.
1 J.M. Heuser − Status of the Silicon Tracking System Johann M. Heuser, GSI Darmstadt CBM Collaboration Meeting JINR Dubna, 16 October 2008 CBMCBM Status.
Jeroen van Hunen The LHCb Tracking System. May 22, 2006 Frontier Detectors for Frontier Physics, Elba, Jeroen van Huenen 2 The LHCb Experiment LHCb.
1 Compressed Baryonic Matter at FAIR:JINR participation Hadron Structure 15, 29 th June- 3 th July, 2015 P. Kurilkin on behalf of CBM JINR group VBLHEP,
Centrality Determination and Reaction plane reconstruction with MPD D.Dryablov, V. Zhezher, M.Kapishin, G.Musulmanbekov XIV GDRE Workshop, Dubna
High-resolution, fast and radiation-hard silicon tracking station CBM collaboration meeting March 2005 STS working group.
Ooo Performance simulation studies of a realistic model of the CBM Silicon Tracking System Silicon Tracking for CBM Reconstructed URQMD event: central.
Beam Test June 2010 CMS SUMMARY REPORT 1 Stefano Colafranceschi.
Charmonium feasibility study F. Guber, E. Karpechev, A.Kurepin, A. Maevskaia Institute for Nuclear Research RAS, Moscow CBM collaboration meeting 11 February.
Installation and operation of the LHCb Silicon Tracker detector Daniel Esperante (Universidade de Santiago de Compostela) on behalf of the Silicon Tracker.
M. Deveaux, CBM collaboration meeting, Oct. 2008, Dubna, Russia A revision of the concept of the CBM – MVD Or: Do we need an intermediate pixel.
HallA/SBS – Front Tracker PARAMETERDESIGN VALUE Microstrip Silicon Detector Number of tiles/plane and size2 Number of planes2 Size of the single
Yosuke Watanabe….. University of Tokyo, RIKEN A, KEK C, Development of a GEM tracker for E16 J-PARC 1 Thanks to ???????????
Impact parameter resolution study for ILC detector Tomoaki Fujikawa (Tohoku university) ACFA Workshop in Taipei Nov
Status of straw-tube tracker V.Peshekhonov, D.Peshekhonov, A.Zinchenko JINR, Dubna V.Tikhomirov P.N.Lebedev Physics Institute, Moscow Presented on the.
Status report on the Asian Solid State Tracking R&D March 31, 2003 M. Iwasaki University of Tokyo.
1 J.M. Heuser – CBM Silicon Tracking System Roadmap for the development of STS module demonstrators Concept Common interfaces/dimensions Some technical.
Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger,
1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe.
A Silicon vertex tracker prototype for CBM Material for the FP6 Design application.
S. Belogurov, ITEP, Moscow CBM Collaboration meeting, Split, CBM beam pipe and integration inside the Magnet Status report Sergey Belogurov,
News on microstrip detector R&D —Quality assurance tests— Anton Lymanets, Johann Heuser 12 th CBM collaboration meeting Dubna, October
Optimization of the Silicon Tracking System (STS) layout and beam pipe configuration for the CBM experiment. Andrey Chernogorov, Sergey Belogurov, ITEP,
Dmitri Ossetski Obninsk State University Department of Applied Mathematics
Performance simulations with a realistic model of the CBM Silicon Tracking System Silicon tracking for CBM Number of integration components Ladders106.
RPC Design Studies Gabriel Stoicea, NIPNE-HH, Bucharest CBM Software Week GSI-Darmstadt May 10, 2004.
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
STS simulations: Layout, digitizers, performance Radoslaw Karabowicz GSI.
Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,
STS Radiation Environment 11 th CBM Collaboration Meeting GSI, February 2008 Radoslaw Karabowicz GSI.
Track reconstruction in TRD and MUCH Andrey Lebedev Andrey Lebedev GSI, Darmstadt and LIT JINR, Dubna Gennady Ososkov Gennady Ososkov LIT JINR, Dubna.
Jonathan BouchetBerkeley School on Collective Dynamics 1 Performance of the Silicon Strip Detector of the STAR Experiment Jonathan Bouchet Subatech STAR.
1 J.M. Heuser − Status of the Silicon Tracking System Johann M. Heuser CBM Collaboration Meeting GSI Darmstadt, 12 March 2009 Status of the CBM Silicon.
13-jan-2014 Some results for a GEM-based central detector A.Zinchenko, V.Vasendina, M.Kapishin VBLHEP, JINR, Dubna, Russia.
CBM-Meet, VECC July 21, Premomoy Ghosh CBM – MUCH Simulation for Low-mass Vector Meson Work done at GSI during June 2006.
Beam Test of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger, A.
P.F.Ermolov SVD-2 status and experimental program VHMP 16 April 2005 SVD-2 status and experimental program 1.SVD history 2.SVD-2 setup 3.Experiment characteristics.
The Silicon Tracking System of the CBM experiment FAIR 2014, Worms, October 2014 requirements and detector concept system performance prototype.
FCAL Krakow meeting, 6. May LumiCal concept including the tracker R. Ingbir, P.Růžička, V. Vrba.
Anna Kotynia.  8 stations  fully based on micro-strip detectors Tracking detector: -low-mass detector -full azimuthal angle coverage -polar angle coverage:from.
FP-CCD GLD VERTEX GROUP Presenting by Tadashi Nagamine Tohoku University ILC VTX Ringberg Castle, May 2006.
Mitglied der Helmholtz-Gemeinschaft Hit Reconstruction for the Luminosity Monitor March 3 rd 2009 | T. Randriamalala, J. Ritman and T. Stockmanns.
0 Characterization studies of the detector modules for the CBM Silicon Tracking System J.Heuser 1, V.Kyva 2, H.Malygina 2,3, I.Panasenko 2 V.Pugatch 2,
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
14-oct-2014 GEM detector configuration 1 12 stations: Z = 30 – 45 – 60 – 80 – 100 – 130 – 160 – 190 – 230 – 270 – 315 – 360 Stereo angles: 0 – 7.5 deg.
14-oct-2014 GEM detector configuration 1 12 stations: Z = 30 – 45 – 60 – 80 – 100 – 130 – 160 – 190 – 230 – 270 – 315 – 360 Stereo angles: 0 – 7.5 deg.
Design and development of thin double side silicon microstrip sensors for CBM experiment Mikhail Merkin Skobeltsyn Institute of Nuclear Physics Moscow.
1 J.M. Heuser − STS R&D Johann M. Heuser, GSI CBM-STS Project Leader Meeting on Experiment with external HI beams of the Nuclotron-M JINR, 4 February 2011.
Vasilisa Lenivenko Vladimir Palichik (LHEP, JINR ) Alushta, June 2016.
The Status of the CBM Experiment
Progress with System Integration of the CBM Silicon Tracking Detector
Developing Radiation Hard Silicon for the Vertex Locator
Huagen Xu IKP: T. Randriamalala, J. Ritman and T. Stockmanns
MAGIX Detectors Overview
ILC Detector Activities in Korea
First results from technical run with deuteron beam
The LHC collider in Geneva
Pradeep Ghosh for the CBM Collaboration Goethe-Universität, Frankfurt
Special Considerations for SIDIS
GEANT Simulations and Track Reconstruction
Presentation transcript:

Simulation / reconstruction with GEMs at DAC A.Zinchenko, A.Kapishin, V.Vasendina for the collaboration VBLHEP, JINR, Dubna, Russia

2 Outline 1. GEM tracker acceptance 2.„Microsimulation“ of GEMs 3.Performance of GEM tracker start version 4.STS + GEM tracker

3 GEM tracker acceptance

4

5 GEM detector parameters D. Baranov

GEM microsimulation D. Baranov 6

GEM angular characteristics D. Baranov 7

8 GEM detector start configuration 6 stations: Z (cm) = 30 – 45 – 60 – 80 – 100 – 130 Stereo angles: 0 – 15 deg in stat. 1-6 Pitch: 800 um in stat stations beam

9 Momentum resolution Generator: QGSM, d + 12 C, E kin = 4 GeV, minbias Geometry: 6 stations of GEM Magnetic field: FieldMap - field_sp41v1_ascii_Extrap.dat (B = 0.44)

10 Λ reconstruction (d+C) Data set Generator: QGSM, d + 12 C, E kin = 4 GeV, minbias, 0.5M events Geometry 1: 6 thin stations of GEM Geometry 2: 6 thick stations of GEM (3mm) Magnetic field: B = 0.44 No PID 1 2

11 Λ reconstruction (C+C) Data set Generator: UrQMD, 12 C + 12 C, E kin = 4 GeV, b = fm, 0.1M events Geometry: 6 thin stations of GEM Magnetic field: B = 0.44 No PID

12 geometry CBM STS stations: STS + GEM STS: 48x40, 48x40, 72x40, 72x40 cm

13 STS geometry 6.2 cm × 2.2 cm6.2 cm × 4.2 cm6.2 cm × 6.2 cm few sizes, small numbers fill gaps at beam hole standard sensors throughout the stations Silicon microstrip sensors: 1024 strips per sensor 15° stereo angle 60 µm strip pitch  Stations have a modular structure and are constructed from 300 µm thick double-sided silicon microstrip sensors.  Groups of sensors (sectors) are individually read out with electronics located at the perimeter of the stations.  Signals from the sectors are sent through thin aluminum-polyimide micro-cables to the front-end electronics.

14 Track reconstruction

15 Λ reconstruction (Au+Au) GEM (12 stations) STS (4 stations) + GEM (8 stations) Data set Generator: UrQMD, Au+Au, E kin = 4.5 GeV, b = fm, 10 kevents Geometry 1: STS (4 stations) + GEM (8 thick stations) Z (cm) : 30, 40, 50, 60, 90, 120, 150, 180, 220, 260, 305, 350 Geometry 2: GEM (12 thick stations) Z (cm) : 30, 45, 60, 80, 100, 130, 160, 190, 230, 270, 315, 360 Magnetic field: B = 0.44 No PID Size: 4 GEM- 60x60, 60x60, 80x80, 80x80 cm 4 STS - 48x40, 48x40, 72x40, 72x40 cm

16 Summary 1.Simulation details do not seem to affect detector performance too much 2.Several silicon first stations (STS) could improve the performance