Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Hydrogen-burning reactions at astrophysically relevant energies Laboratory Underground Nuclear.

Slides:



Advertisements
Similar presentations
 s(E) = S(E) e–2ph E-1 s Laboratory for Underground
Advertisements

Carlo Broggini, INFN-Padova Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 2 cm m m m m Astrophysical Factor Gamow Factor Reaction Rate(star)
Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 Reaction Rate(star) (E) (E) dE Gamow Peak Maxwell Boltzmann Extrap.Meas. LUNA results Men in.
LUNALUNA Nucleosintesi stellare (E star ) (E) = S(E)/E e –2 2 cm m m m m Fattore astrofisico Interazioni(stella) (E) (E) dE Picco di Gamow Maxwell Boltzmann.
NuPECC - Milan Present and future of Laboratory Underground Nuclear Astrophysics Alba Formicola - Status of the D(, ) 6 Li measurement -Status of.
Underground Measurement of the 17O+p Reactions
Alpha Stucture of 12 B Studied by Elastic Scattering of 8 Li Excyt Beam on 4 He Thick Target M.G. Pellegriti Laboratori Nazionali del Sud – INFN Dipartimento.
Astrophysical Reaction Rate for the Neutron-Generator Reaction 13 C(α,n) in Asymptotic Giant Branch Stars Eric Johnson Department of Physics Florida State.
15 N Zone 8 Zone 1 Zone 28 p Zone 1 Zone O Zone 1 Zone 4 Zone 8 Zone N 16 O p Reaction rates are used to determine relative abundance of elements.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Text optional: Institutsname Prof. Dr. Hans Mustermann Mitglied der Leibniz-Gemeinschaft Direct measurement of the d( α, γ ) 6 Li cross-section.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
The LUNA experiment: direct measurement of thermonuclear cross sections of astrophysical interest Alessandra Guglielmetti Universita’ degli Studi di Milano.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Constraining the astrophysical S-factor of the 3 He(  ) 7 Be reaction Constraining the astrophysical S-factor of the 3 He(  ) 7 Be reaction Mariano.
Gianluca Imbriani Physics Department of University of Naples Federico II, Italian National Institute of Nuclear Physics (INFN) and Joint Institute of Nuclear.
Searching for the Low-Energy Resonances in the 12 C( 12 C,n) 23 Mg Reaction Cross Section Relevant for S-Process Nucleosynthesis Brian Bucher University.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
I. Introductory remarks and present status II. Laboratory experiments and astrophysics III. Future options scenarios status and challenges new developments.
ESF Workshop on The future of stable beams in Nuclear Astrophysics, Athens, Dec , 2007 Stable ion beams for nuclear astrophysics: Where do we stand.
ANC Techniques and r-matrix analysis Santa Fe, April 2008 ANC Techniques and r-matrix analysis Grigory Rogachev.
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
Nucleosynthesis in AGB Stars: the Role of the 18 O(p,  ) 15 N Reaction Marco La Cognata.
Institute for Structure and Nuclear Astrophysics Nuclear Science Laboratory E381: Search of potential resonances in the 12 C+ 12 C fusion reaction using.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
ERNA: Measurement and R-Matrix analysis of 12 C(  ) 16 O Daniel Schürmann University of Notre Dame Workshop on R-Matrix and Nuclear Reactions in Stellar.
Experimental Nuclear Astrophysics: Key aspects & Open problems Marialuisa Aliotta School of Physics University of Edinburgh Nuclear Physics Autumn Retreat.
Indirect Techniques ( I) : Asymptotic Normalization Coefficients and the Trojan Horse Method NIC IX R.E. Tribble, Texas A&M University June, 2006.
Indirect measurements of the -3 keV resonance in the 13 C(α, n) 16 O reaction: the THM approach Marco La Cognata.
1/38 Laboratory Underground Nuclear Astrophysics The D( 4 He,  ) 6 Li reaction at LUNA and the Big Bang Nucleosynthesis Carlo Gustavino For the LUNA collaboration.
L’esperimento LUNA- CdS MI luglio 2012 Alessandra Guglielmetti Università degli Studi di Milano e INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics.
Shuya Ota: Japan Atomic Energy Agency, Rutgers University H. Makii, T. Ishii, K. Nishio, S. Mitsuoka, I. Nishinaka : Japan Atomic Energy Agency M. Matos,
NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA D. Trezzi (for the LUNA collaboration) Università degli Studi di Milano | INFN – New Vistas in Low-Energy.
The LUNA experiment at Gran Sasso Laboratory: studying stars by going underground Alessandra Guglielmetti Università degli Studi di Milano and INFN, Milano,
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
22Ne(a,n)25Mg status and perspectives (for an underground experiment)
 s s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Nuclear Astrophysics at LUNA and the Big Bang Nucleosynthesis
L’esperimento LUNA- CdS MI giugno 2013
5ATOMKI Debrecen, Hungary
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI luglio 2017
György Gyürky Institute for Nuclear Research (Atomki)
Stars, Accelerators and Underground Laboratories
Why going underground g-background
Zs. Fülöp ATOMKI, Debrecen, Hungary
The scientific program for the first five years of LUNA-MV
the s process: messages from stellar He burning
Stato dell'esperimento LUNA
Laboratory for Underground Nuclear Astrophysics
status and perspectives
Alessandra Guglielmetti Universita’ degli Studi di Milano and
Underground Astrophysics at Surface Facilities: the Atomki case
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
The D(4He,)6Li reaction at LUNA and the Big Bang Nucleosynthesis
The astrophysical p-process
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI giugno 2015
 s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Carbon, From Red Giants to White Dwarfs
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
Nucleosynthesis 12 C(
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
BBN, neutrinos and Nuclear Astrophysics
(g,z) Breakup Experiments Charged Particles in the Final State
Study of the resonance states in 27P by using
 s(E) = S(E) e–2ph E-1 s Nuclear Burning in Stars s(Estar) s
Elastic alpha scattering experiments
Presentation transcript:

Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Hydrogen-burning reactions at astrophysically relevant energies Laboratory Underground Nuclear Astrophysics Alba Formicola

Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Outline  the main results and achievements in nuclear astrophysics  a close look on last LUNA works mainly 3 He(  ) 7 Be; 14 N(p,  ) 15 O; 15 N(p,  ) 16 O (see Caciolli’s poster) 25 Mg(p,  ) 26 Al the measurements in progress: d(  ) 6 Li (Bellini’s talk) 17 O(p,  ) 18 F (see Scott’s poster)  perspectives LUNA MV in LNGS (key reactions of the He burning and neutron sources for the s-process)

Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Importance of experimental reaction rates for understanding of nucleosynthesis, energy production in stars, solar neutrino problem, theories of stellar evolution Quiescent burning (essentially p and  radiative capture): Eo<< CB;  < pb i) Direct measurements at E = Eo ii) Extrapolation from higher energy measurements iii) indirect methods (Coul. break-up, delayed activity transfer reactions, "trojan horses") Imply very low background (underground lab) Imply use of efficient and selective detection apparatuses Imply comparison with direct methods and model tuning

reaction S(0) [keV b] Solar Fusion I 1998 S(0) [keV b] Solar Fusion II 2010 p(p,e + e )d (4.01 ± 0.02)* (4.01 ± 0.04)* He( 3 He,2p) 4 He (5.4 ± 0.4)*10 3 (5.21 ± 0.27)* He(  ) 7 Be (0.53 ± 0.05)(0.56 ± 0.03) 3 He(p,e + e ) 4 He 2.3* (8.6 ± 2.6)* Be(p,  ) 8 B (2.08 ± 0.16)* N(p,  ) 15 O ± 0.12 Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011  ( 8 B) ~ (1+  S 11 ) (1+  S 33 ) (1+  S 34 ) 0.85 (1+  S 17 ) 1.0 (1+  S e7 ) -1.0 (1+  S 1,14 ) where fractional uncertainty  S 11   S 11 /S 11 (0) (Peña-Garay and Serenelli arXiv: v1) The better determination of cross sections will imply a contribution to the solar abundances understanding (Carlos’ talk) Nuclear reactions in hydrogen-burning

E  = 478 keV 3 He( ,  ) 7 Be(e, ) 7 Li*(  ) 7 Li E  =1586 keV + E cm (DC  0); E  = 1157 keV + E cm (DC  429) E  = 429 keV Average  prompt Average activa. Prompt  Activation The two techniques show a 9% discrepancy Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011

 3 He recirculating gas target p=0.7mbar  Si-monitor for target density measurements (beam heating effect)  Collimated HPGe detector to collect  ray at 55   0.3 m 3 Pb-Cu shield suppression five orders of magnitude below 2MeV  Removable calorimeter cap for offline 7 Be counting Experimental set-up GOAL at LUNA reach an accuracy ~ 4-5 % Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011

LUNA spectra: via detection of prompt and delayed  rays Confortola et al., PRC 75, (2007) Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Gyurky et al., PRC 75, (2007)

Extrapolation to solar energies: 3 He(  ) 7 Be Potential models (global scaling parameter): Tombrello & Parker, Descouvemont (R-matrix based), Mohr Microscopic models (no global scaling parameter): Csótó & Langanke, Kajino et al., Nollett, etc... Usually claimed to be valid up to E cm ~2.0MeV By Courtesy of A. Di Leva (ERNA collaboration) Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011

S 34 (0)= 0.56 ± 0.02 (exp) ± 0.02 (model) keV b ref: Solar fusion cross sections II: arXiv: v3 (The analysis is based on all activation data plus ERNA recoil data) Further work … By Courtesy of C. Peña-Garay  Improved models are needed to assess the low energy slope of S 34 (E) (see also talk by Neff)  Additional experimental information to better constrain the models will help to reduce the uncertainty ( see also talk by Bondili and Carmona ‘s poster) Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 The 3 He(  ) 7 Be reaction: S(0)

Transition(MeV) Schröder et al. (Nucl.Phys.A 1987) Angulo et al. Angulo et al. (Nucl.Phys.A 2001) RC / ± ± 0.06 RC / ± ± 0.02 RC / ± ± 0.17 S(0) [kev-b] 3.20 ± ± 0.20 The 14 N(p,  ) 15 O reaction before LUNA and LENA works Sch. Angulo Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011

High resolution measurement (2004) Solid target + HPGe detector  Measurement of all γ transitions  Energy range keV  summing had to be considered  R-matrix on single transitions Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Gas target+ BGO detector  BGO detector efficiency in the ROI ~ 65%  measurement of total cross section  Energy range keV  R-matrix solid target in agreement with data High efficiency measurement (2006) CNO neutrino flux decreases a factor  2 Globular Cluster age increases of 0.7 – 1 Gyr

New precision study of Ground State Clover (2008)  E = 318, 324, 353 keV,  Solid TiN thick+ Clover detector: 4 single HPGe crystals closely packed: Surrounding BGO for anti-Compton shielding  Measurement of the RC → 0 transition  Negligible summing correction Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Direct Meaus. Indirect Measu. Ex [keV] Schöreder et al. NuPhA467 (1987) LUNA EPJ25 (2005) LENA PRL94 (2005) Mukhamedzhanov et al. PRC 67(2005) Nelson et al PRC 67 (2003) ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.20 tot3.20 ± ± ± ± 0.22 The 14 N(p,  ) 15 O reaction: S(0)

Typical clover  -spectra E p =290keV 19 F(p,  ) 16 O DC → → → → → 0 DC → 6792 DC → 6172DC → 5181 E p =380keV Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011

Results for capture to ground state 14 N(p,  ) 15 O  At three energies, precise ratio of cross sections: ground state / 6792  Updated R-matrix fit, new recommended S GS (0)=0.20±0.05 keV barn LUNA (2004): 0.25  0.06 keV barn TUNL (2005): 0.49  0.08 keV barn LUNA (2008): 0.20  0.05 keV barn Marta et al., Phys.Rev.C 78, (R) (2008) Marta et al. arXiv: v1 (accpted PRC 2011)arXiv: v1 Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011

R-matrix fit to the 14 N(p,  ) 15 O 6.79 MeV transition S 14 (0) = 1.66 ± 0.12 keV b ref: Solar fusion cross sections II: arXiv: v3 Further work on 14 N(p,  ) 15 O is needed  A better understanding of the reaction mechanism to the 6.79 MeV state at high energies.  Additional experimental and theoretical work on the transition to the 6.17 MeV state is needed Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011

AGB nucleosynthesis - 17 O/ 18 O abundaces, 19 F origin, 26 Mg excess....: ………………….., 15 N(p,  ) 16 O, 15 N(p,  ) 12 C, 17 O(p,  ) 18 F(  + ) 18 O, 18 O(  ) 22 Ne, ………, 24 Mg(p,  ) 25 Al(  + ) 25 Mg, 25 Mg(p,  ) 26 Al(  + ) 26 Mg, 26 Mg(p,  ) 27 Al… H-shell burning

Nuclear Physics in Astrophysics V, Eilat 3-8 April Q Al 0 26 Al m (4 + ) Al Novae explosive Burning (T 9 >0.1) AGB or W-R Stars (T 9 ~0.05) E x (keV) JJ E CM (keV)  No direct strength resonance data Mg CIRCE lab. Caserta, Italy Complementary study of 25 Mg(p,  ) 26 Al(  + ) 26 Mg HPGe phase E cm =304,190 keV AMS E cm =304keV BGO phase E cm =304,190,93 keV

Nuclear Physics in Astrophysics V, Eilat 3-8 April Mg(p,  ) 26 Al spectrum at E cm = 190 keV Branchngs EE EXEX LUNA [%] err Endt [%] O(p,  ) 19 F 11 B(p,  ) 12 C 19 F(p,  ) 16 O 11 B(p,  ) 12 C

25 Mg(p,  ) 26 Al E cm = 190 keV wg [eV] LUNA HPGe wg [eV] LUNA BGO wg [eV] Iliadis et al wg [eV] NACRE wg [eV] AMS Arazi et al 2006 (8.8±0.8)x10 -7 (9.2 ±0.7)  (7.1 ± 1.0)  (7.1 ± 0.9)  (1.5 ± 0.3)  Mg(p,  ) 26 Al E cm = 304 keV wg [meV] LUNA HPGe wg [meV] LUNA BGO wg AMS / wg BGO LUNA AMS wg [meV] Iliadis et al wg [meV] NACRE 30.7 ± ± ± ± 231 ± 2 Results Preliminary to be published B. Limata, et al., PRC 82(2010)  -ray signal intrinsic background beam induced background level of cosmic-ray background in surface lab 25 Mg(p,  ) 26 Al spectrum E R = 93 keV

Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 New study of the 17 O(p,  ) 18 F and 17 O(p,  ) 14 N 17 O+p is of paramount importance for understanding hydrogen-burning in different stellar environments: Red Giants Massive Stars Asymptotic Giant Branch (AGB) Varying the corresponding 17 O(p,  ) 14 N and 17 O(p,  ) 18 F reaction rates within the adopted uncertainty intervals, the isotopic abundances of 17 O and 18 F change by more than a factor 2 in Nova nucleosynthesis. C.Fox et al PRC71,055801(2005)

Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Activation method ( 18 F → 18 O) measured at STELLA (with the collaboration of M.Laubenstein) LUNA approach Resonance and direct capture study with  -prompt and activation (Ep= keV) in progress Study of the resonance at E R,lab = 70 keV (alpha channel) using a Double Sided Silicon strip Detector (53cm 2 ) from Edinburgh under backward angles in close geometry High energy study (E R,lab =590 and 716 keV)

Nuclear Physics in Astrophysics V, Eilat 3-8 April O(p,  ) 18 F spectrum at E p =300keV DC->3839 DC->3060 DC->937

Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 The LUNA MV project April 2007: a Letter of Intent (LoI) was presented to the LNGS Scientific Committee (SC) containing key reactions of the He burning and neutron sources for the s-process: 12 C(  ) 16 O 13 C( ,n) 16 O 22 Ne( ,n) 25 Mg (  ) reactions on 14, 15 N and 18 O The LUNA collaboration produced an update of the LoI where the experimental conditions and neutron production rates were re-evaluated and the machine chacteristics were better specified. Update on the LUNA MV letter of Intent 42/07 February 26 th, 2010 Alessandra Guglielmetti for the LUNA collaboration LUNA MV LUNA 50kV LUNA 400kV

Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Possible location at the interferometric node of a 3.5 MV single-ended positive ion accelerator. A real feasibility study started, the LNGS technical divisions and management are highly involved.

Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Next-generation underground laboratory for Nuclear Astrophysics: …. call to the European Nuclear Astrophysics community for a wider collaboration in support of the next- generation underground laboratory. To state your interest to contribute to any of the Work Packages under International Collaboration WP1: Accelerator + ion source WP2: Gamma detectors WP3: Neutron detectors WP5: Solid targets WP6: Gas target WP7: Simulations WP8: Stellar model calculations Representatives: Aliotta Marialuisa, Luis Fraile, Zsolt Fulop, Alessandra Guglielmetti

THE LUNA COLLABORATION Laboratori Nazionali del Gran Sasso, INFN, ASSERGI: A.Formicola, C. Gustavino(  Universita' di Roma 1), M.Junker, C. Salvo Forschungszentrum Dresden-Rossendorf, Germany M. Anders, D. Bemmerer, Z.Elekes INFN, Padova, Italy C. Broggini, A. Caciolli, R.Menegazzo, C. Rossi Alvarez Institute of Nuclear Research (ATOMKI), Debrecen, Hungary Zs.Fülöp, Gy. Gyurky, E.Somorjai, T. Szucs Osservatorio Astronomico di Collurania, Teramo, and INFN, Napoli, Italy O. Straniero Ruhr-Universität Bochum, Bochum, Germany C.Rolfs, F.Strieder, H.P.Trautvetter Seconda Università di Napoli, Caserta, and INFN, Napoli, Italy F.Terrasi Università di Genova and INFN, Genova, Italy P.Corvisiero, P.Prati Università di Milano and INFN, Milano, Italy M.Campeggio,A.Guglielmetti, D. Trezzi Università di Napoli ''Federico II'', and INFN, Napoli, Italy A.di Leva, G.Imbriani, V.Roca Università di Torino and INFN, Torino, Italy G.Gervino University of Edinburgh M. Aliotta and D. Scott Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011