SMA and ASTE Observations of Low-mass Protostellar Envelopes in the Submillimeter CS (J = 7-6) and HCN (J = 4-3) Lines Shigehisa Takakuwa 1, Takeshi Kamazaki.

Slides:



Advertisements
Similar presentations
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Advertisements

The Serpens Star Forming Region in HCO +, HCN, and N 2 H + Michiel R. Hogerheijde Steward Observatory The University of Arizona.
Submillimeter Array observations of the L1157 protostellar jet Arturo I. Gomez Centro de Radioastronomia y Astrofisica UNAM, Mexico 5th JETSET school Naomi.
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
1)Disks and high-mass star formation: existence and implications 2)The case of G : characteristics 3)Velocity field in G31.41: rotation or expansion?
Ammonia and CCS as diagnostic tools of low-mass protostars Ammonia and CCS as diagnostic tools of low-mass protostars Itziar de Gregorio-Monsalvo (ESO.
From Pre-stellar Cores to Proto-stars: The Initial Conditions of Star Formation PHILIPPE ANDRE DEREK WARD-THOMPSON MARY BARSONY Reported by Fang Xiong,
Imaging Arp 220 in CO 6-5 and dust at 100 pc resolution with ALMA C. Wilson, (McMaster); N. Rangwala, J. Glenn, P. Maloney, J. R. Kamenetzky (Colorado);
Low-Mass Star Formation in a Small Group, L1251B Jeong-Eun Lee UCLA.
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
EGOs: Massive YSOs in IRDCs Ed Churchwell & Claudia Cyganowski with co-workers: Crystal Brogan, Todd Hunter, Barb Whitney Qizhou Zhang Dense Cores in Dark.
Figure 8. Input parameters for a tilted-ring model of the HI in NGC We used 40 rings of width 29”, corresponding to a width of ~1.2 kpc at a distance.
SiO J=5-4 in the HH211 Protostellar Jet Imaged with the SMA Naomi Hirano (ASIAA, Taiwan) (=^_^=) (=^_^=)/ Sheng-yuan Liu 1, Hsien Shang 1, PaulT.P. Ho.
A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.
The SMA CO(6-5) & 690 GHz Continuum Observations of Arp 220 Satoki Matsushita (ASIAA) D. Iono (CfA), C.-Y. Chou (ASIAA), M. Gurwell (CfA), P.-Y. Hsieh.
Outflow-Envelope Interactions at the Early Stages of Star Formation Héctor G. Arce (AMNH) & Anneila I. Sargent (Caltech) Submillimeter Astronomy: in the.
SMA Observations of HH 212 Chin-Fei Lee Collaborators: (CFA) Paul Ho, Qizhou Zhang, Tyler Bourke, Henrik Beuther (ASIAA) Naomi Hirano, Sheng-Yuan Liu,
SMA Observations of High Mass Protostellar Objects (HMPOs) Submm Astronomy in Era of SMA June 15, 2005 Crystal Brogan (U. of Hawaii) Y. Shirley (NRAO),
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Structure of circumstellar envelope around AGB and post-AGB stars Dinh-V-Trung Sun Kwok, P.J. Chiu, M.Y. Wang, S. Muller, A. Lo, N. Hirano, M. Mariappan,
Submillimeter Astronomy in the era of the SMA, Cambridge, June 14, 2005 Star Formation and Protostars at High Angular Resolution with the SMA Jes Jørgensen.
MOLECULAR GAS and DUST at the CENTER of the EGG NEBULA Jeremy Lim and Dinh-V-Trung (Institute of Astronomy & Astrophysics, Academia Sinica, Taiwan) Introduction.
SiO J=5-4 in the HH211 Protostellar Jet Imaged with the SMA Naomi Hirano (ASIAA, Taiwan) (=^_^=) (=^_^=)/ Sheng-yuan Liu 1, Hsien Shang 1, PaulT.P. Ho.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
2005 June 2260th Symposium on Molecular Spectroscopy Outflows and Magnetic Fields in L1448 IRS3 Woojin Kwon Leslie W. Looney Richard M. Crutcher Jason.
Magnetic Fields Near the Young Stellar Object IRAS M. J Claussen (NRAO), A. P. Sarma (E. Kentucky Univ), H.A. Wootten (NRAO), K. B. Marvel (AAS),
Water maser emission in Bok globules Bok Globules Bok globules are small (
Massive Star Formation: The Role of Disks Cassandra Fallscheer In collaboration with: Henrik Beuther, Eric Keto, Jürgen Sauter, TK Sridharan, Sebastian.
The hot core that is not a “Hot Core”: Orion KL
Do YSOs host a wide-angled wind? - NIR imaging spectroscopy of H 2 emission - 3. Spectro-Imaging using Gemini-NIFS Subaru UM, 1/30/2008 Hiro Takami (ASIAA)
CARMA Large Area Star-formation SurveY  Completing observations of 5 regions of square arcminutes with 7” angular resolution in the J=1-0 transitions.
Spectropolarimetry of the starburst galaxy M82: Kinematics of dust outflow Michitoshi YOSHIDA 1),2), Koji S. KAWABATA 1), and Yoichi OHYAMA 3) 1) Hiroshima.
ALMA Observations of Keplerian Disks around Protostars: the case of L1527 Nagayoshi Ohashi (NAOJ) NMA With K. Saigo, Y. Aso, S.-W. Yen, S. Takakuwa, S.
Imaging Molecular Gas in a Nearby Starburst Galaxy NGC 3256, a nearby luminous infrared galaxy, as imaged by the SMA. (Left) Integrated CO(2-1) intensity.
Studying Young Stellar Objects with the EVLA
Protostellar jets and outflows — what ALMA can achieve? — 平野 尚美 (Naomi Hirano) 中研院天文所 (ASIAA)
ASIAA Interferometry Summer School – 2006 Introduction – Radio Astronomy Tatsuhiko Hasegawa (ASIAA) 1. Atmospheric window to the electromagnetic waves.
Submillimeter Array CH3OH A Cluster of Highly Collimated and Young Bipolar Outflows Emanating from OMC1 South. Luis A. Zapata 1,2, Luis.
3D SPECTROSCOPY OF HERBIG HARO OBJECTS R. López 1, S.F. Sánchez 2, B. García-Lorenzo 3, R. Estalella 1, G. Gómez 3, A. Riera 4,1, K. Exter 3 (1) Departament.
 1987, Whistler: first time I met Malcolm  , post-doc at MPIfR: study of molecular gas in UC HII regions (NH 3, C 34 S, CH 3 CN) with 100m and.
( 1: Kobe University, 2: Nagoya University, 3: NAOJ) ☆ Abstract ☆ We obtained a high spatial resolution (FWHM ~ 0.1”) near-infrared image of XZ Tau, a.
IRAS : A Puzzling High-Mass Protostar Candidate Aina Palau, Robert Estalella, Departament d'Astronomia i Meteorologia, Universitat de Barcelona.
Methanol Masers in the NGC6334F Star Forming Region Simon Ellingsen & Anne-Marie Brick University of Tasmania Centre for Astrophysics of Compact Objects.
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
Possible Future Spectroscopic Star Formation Surveys James Di Francesco (National Research Council Herzberg)
Searching for massive pre-stellar cores through observations of N 2 H + and N 2 D + (F. Fontani 1, P. Caselli 2, A. Crapsi 3, R. Cesaroni 4, J. Brand 1.
IV. Radiative Transfer Models The radiative transfer modeling procedure is the same procedure used in Shirley et al. (2002) except that the visibility.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Top) The two-sided (red for receding and blue for approaching sides) SiO (J=8- 7) jet observed with the SMA (Lee et al. 2007). Gray image shows the shocked.
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
NGC7538-IRS1: Polarized Dust & Molecular Outflow C. L. H. Hull (UC Berkeley), T. Pillai (Caltech), J.-H. Zhao (CfA), G. Sandell (SOFIA-USRA, NASA), M.
ALMA Cycle 0 Observation of Orion Radio Source I Tomoya Hirota (Mizusawa VLBI observatory, NAOJ) Mikyoung Kim (KVN,KASI) Yasutaka Kurono (ALMA,NAOJ) Mareki.
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
SMA and JCMT Observations of IRAS in HCN J=4-3: From Circumbinary Envelope to Circumstellar Disk SMA JCMT Shigehisa Takakuwa 1, Nagayoshi Ohashi.
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
Fumitaka Nakamura (National Astronomical Observatory of Japan)
SMA Observations of 321 GHz water maser emission in Cepheus A
Portrait of a Forming Massive Protocluster: NGC6334 I(N)
Infrared Dark Clouds as precursors to star clusters
The Wasp-Waist Nebula: VLA NH3 Observations of the Molecular Core Envelope in a Unique Class 0 Protostellar System Jennifer Wiseman (GSFC), Mary Barsony.
OBSERVATIONS OF BINARY PROTOSTARS
High Resolution Submm Observations of Massive Protostars
Probing of massive star formation with dense molecular lines
Chasing disks around massive stars with Malcolm
Arizona Radio Observatory (ARO) Facilities
Presentation transcript:

SMA and ASTE Observations of Low-mass Protostellar Envelopes in the Submillimeter CS (J = 7-6) and HCN (J = 4-3) Lines Shigehisa Takakuwa 1, Takeshi Kamazaki 2, Nagayoshi Ohashi 1, & Paul T. P. Ho 1 (1: ASIAA, 2: NAOJ, ALMA) Introduction Previous millimeter molecular-line observations have found AU-scale molecular ``envelopes’’ with both rotation and infalling gas motion around low-mass protostars (Ohashi et al. 1996, 1997). These millimeter observations have probed structures and kinematics of molecular gas with a temperature of ~ K and a density of ~ cm -3 in the envelopes. However, structures and kinematics of warmer (> 40 K) and/or denser (> 10 7 cm -3 ) gas in those envelopes, which are presumably more relevant to the formation of the central star, remain poorly understood. In order to clarify the extent, structure, and the kinematics of the warm and dense gas in low-mass protostellar envelopes, we have been conducting combined interferometric and single-dish observations of low-mass protostellar envelopes in the submillimeter CS (J=7-6) and HCN (J=4-3) lines with the SMA, ASTE, and JCMT. Observations Telescope: Sub-Millimeter Array (SMA) : Atacama Submillimeter Telescope Experiment (ASTE), JCMT Line: CS (J=7-6; GHz) & HCN (J=4-3; GHz) Beam: 22 arcsec (ASTE) : 1.3 × 1.2 arcsec (SMA; IRAS16293), 3.6 × 2.7 arcsec (SMA, L1551 IRS5) SMA F.O.V.: 35 arcsec Velcity Res.: km s -1 (SMA), 0.11 km s -1 (ASTE) Discussion ○ The submm emission often shows extended (> 2000 AU) components as well as compact (~ 500 AU) structures associated with the protostars. The velocity structure of the compact submm components can be interpreted as an infalling motion toward 1 Mo star (IRAS ), or rotation around the binary (L1551 IRS5). ○ The observed submm velocity gradients in the extended components appear to be opposite to those of the associated outflows and/or mm emissions. The origin of the difference is still less clear. The submm emissions seem to trace the wall of the outflow (Fig.1), but the velocity gradient is opposite to that of the outflow. The submm emissions may trace the infalling motion at the cavity wall. Figure 2: SMA + ASTE position - velocity diagram of the CS emission along the direction of the SW extension (P.A. = 72 deg) passing through the central stellar position in L1551 IRS5. The central disklike component has a wide line width (> 2 km s -1 ), while the extended component shows a redshifted velocity with respect to the systemic velocity of 6.5 km s -1. Toward the SW of the protostar the molecular outflow shows a blueshifted velocity, suggesting that the submm emission shows a different velocity structure from that of the molecular outflow and other mm emissions. Figure 4: Total integrated intensity maps of IRAS taken with JCMT (upper), the SMA (lower-middle), & SMA+JCMT (lower-right) in the submm HCN (4-3) emission. A circle indicates the field of view of the SMA, and crosses indicates positions of the binary protostars. The SMA+JCMT image clearly shows that the compact (~ 500 AU) disk at Source A (SE source) is embedded in the extended (~ 3000 AU) circumbinary envelope (Takakuwa et al. 2007b). Figure 5: Position-Velocity (P-V) Diagrams along the cut shown in Fig.4 (a-b), & some models. Gray-scale images show the SMA P-V diagram, while contours show the P-V diagram from the SMA+JCMT image cube. The SMA P-V diagrams systematically miss low-velocity, extended components as compared to the SMA+JCMT P-V diagrams. The North-East to South-West velocity gradient in the high-velocity compact disklike structure toward Source A can be interpreted as an accretion disk on 1Mo, while the velocity gradient in the extended low-velocity envelope represents outflowing gas perpendicular to the compact high-velocity disk (Takakuwa et al. 2007b). a Compact, High-Velocity Disklike Structure Extended, Low-Velocity Envelope Figure 1: SMA (left; Takakuwa et al. 2004) and combined SMA + ASTE image (middle and right) of L1551 IRS5 in the submm CS (7-6) emission. Crosses indicate the position of the central protostar, and red and blue arrows show the direction of the redshifted and blueshifted molecular outflow. Open circles show the SMA Field of View, and the filled ellipses at the bottom left corner the synthesized beam. The SMA image shows the compact (~ 400 AU) disklike structure associated with the central protostar. Combining the SMA and ASTE data reveals an extended (~ 1500 AU) submm component at the south-west of the protostar, where the blueshifted component of the molecular outflow and the K’-reflection nebula reside. b Figure 3: Results of the ASTE observations of B335 in the CS (7-6) emission; total integrated intensity map (upper left), position-velocity diagram along the outflow axis (lower left), and the line profiles along the outflow direction (right). The submm CS emission shows an opposite blue-red velocity gradient from that of the outflow and mm emissions (Takakuwa et al. 2007a). Figure 6:Total integrated intensity map of L483 in the submm HCN (4-3) and CS (7- 6) emission observed with ASTE. Both the HCN and CS emission show western elongation (> 2000 AU) along the direction of the blueshifted outflow (Takakuwa et al. 2007a).