Chapter 2 Recursion: The Mirrors. © 2005 Pearson Addison-Wesley. All rights reserved2-2 Recursive Solutions Recursion is an extremely powerful problem-solving.

Slides:



Advertisements
Similar presentations
Towers of Hanoi Move n (4) disks from pole A to pole C such that a disk is never put on a smaller disk A BC ABC.
Advertisements

CSC 205 Programming II Lecture 10 Towers of Hanoi.
Starting Out with Java: From Control Structures through Objects
Recursion Ellen Walker CPSC 201 Data Structures Hiram College.
COMPSCI 105 S Principles of Computer Science Recursion 1.
Recursive Functions The Fibonacci function shown previously is recursive, that is, it calls itself Each call to a recursive method results in a separate.
Circular Arrays Neat trick: use a circular array to insert and remove items from a queue in constant time The idea of a circular array is that the end.
Recursion Chapter 8. 2 Chapter Contents What Is Recursion? Tracing a Recursive Method Recursive Methods That Return a Value Recursively Processing an.
CS102 Algorithms and Programming II1 Recursion Recursion is a technique that solves a problem by solving a smaller problem of the same type. A recursive.
© 2006 Pearson Addison-Wesley. All rights reserved3-1 Chapter 3 Recursion: The Mirrors CS102 Sections 51 and 52 Marc Smith and Jim Ten Eyck Spring 2008.
Ch. 3: Recursion. Recursive Solutions Recursion –An extremely powerful problem-solving technique –Breaks a problem into smaller identical problems –An.
Chapter 2 Recursion: The Mirrors. © 2005 Pearson Addison-Wesley. All rights reserved2-2 Recursive Solutions Recursion is an extremely powerful problem-solving.
Recursion. Recursive Solutions Recursion breaks a problem into smaller identical problems – mirror images so to speak. By continuing to do this, eventually.
© 2006 Pearson Addison-Wesley. All rights reserved3-1 Chapter 3 Recursion: The Mirrors.
COMPSCI 105 S Principles of Computer Science Recursion 3.
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Starting Out with Java: Early Objects Third Edition by Tony Gaddis Chapter.
Recursion Chapter 7. Chapter 7: Recursion2 Chapter Objectives To understand how to think recursively To learn how to trace a recursive method To learn.
Chapter 2 Recursion: The Mirrors. © 2005 Pearson Addison-Wesley. All rights reserved2-2 Recursive Solutions Recursion is an extremely powerful problem-
CENG 7071 Recursion. CENG 7072 Recursion Recursion is a technique that solves a problem by solving a smaller problem of the same type. A recursive function.
Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 19: Recursion.
Recursion Chapter 7 Copyright ©2012 by Pearson Education, Inc. All rights reserved.
Chapter 14: Recursion Starting Out with C++ Early Objects
Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013 Recursion: The Mirrors Chapter 2.
Recursion: The Mirrors Chapter 2 Data Structures and Problem Solving with C++: Walls and Mirrors, Frank Carrano, © 2012.
Chapter 2 Recursion: The Mirrors CS Data Structures Mehmet H Gunes Modified from authors’ slides.
Recursion 1. CHAPTER TWO Recursion: A recursive function is a function that calls itself. Two functions A and B are mutually recursive, if A calls B and.
Department of Computer Science Data Structures Using C++ 2E Chapter 6: Recursion Learn about recursive Definitions Algorithms Functions Explore the base.
© 2006 Pearson Addison-Wesley. All rights reserved 3-1 Chapter 3 Recursion: The Mirrors.
Chapter 2 Recursion: The Mirrors. © 2005 Pearson Addison-Wesley. All rights reserved2-2 Recursive Solutions Recursion is an extremely powerful problem-
Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013 Recursion: The Mirrors Chapter 2.
1 Storage Classes, Scope, and Recursion Lecture 6.
Chapter 3 Recursion: The Mirrors. © 2004 Pearson Addison-Wesley. All rights reserved 3-2 Recursive Solutions Recursion –An extremely powerful problem-solving.
Recursion Chapter 7. Chapter Objectives  To understand how to think recursively  To learn how to trace a recursive method  To learn how to write recursive.
© 2010 Pearson Addison-Wesley. All rights reserved. Addison Wesley is an imprint of Chapter 15: Recursion Starting Out with Java: From Control Structures.
Copyright © 2011 Pearson Education, Inc. Starting Out with Java: Early Objects Fourth Edition by Tony Gaddis Chapter 14: Recursion.
15-1 Chapter-18: Recursive Methods –Introduction to Recursion –Solving Problems with Recursion –Examples of Recursive Methods.
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Starting Out with Programming Logic & Design Second Edition by Tony Gaddis.
COSC 2006 Data Structures I Recursion II
Chapter 2 Recursion: The Mirrors. © 2005 Pearson Addison-Wesley. All rights reserved2-2 Recursive Solutions Recursion is an extremely powerful problem-
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver Chapter 2: Recursion: The Mirrors.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver Chapter 2: Recursion: The Mirrors Data Abstraction & Problem Solving.
Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Starting Out with Programming Logic & Design Second Edition by Tony Gaddis.
Chapter 14 Recursion. Chapter Objectives Learn about recursive definitions Explore the base case and the general case of a recursive definition Learn.
Chapter 13 Recursion. Learning Objectives Recursive void Functions – Tracing recursive calls – Infinite recursion, overflows Recursive Functions that.
Chapter 10 A Algorithm Efficiency. © 2004 Pearson Addison-Wesley. All rights reserved 10 A-2 Determining the Efficiency of Algorithms Analysis of algorithms.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver Recursive Solutions Recursion is an extremely powerful problem-solving.
Edited by Malak Abdullah Jordan University of Science and Technology Data Structures Using C++ 2E Chapter 6 Recursion.
Java Programming: Guided Learning with Early Objects Chapter 11 Recursion.
CMPT 225 Recursion. Objectives Understand how the Fibonacci series is generated Recursive Algorithms  Write simple recursive algorithms  Analyze simple.
Chapter 2 Recursion: The Mirrors. © 2005 Pearson Addison-Wesley. All rights reserved2-2 Recursive Solutions Recursion is an extremely powerful problem-solving.
A Different Solution  alternatively we can use the following algorithm: 1. if n == 0 done, otherwise I. print the string once II. print the string (n.
Ramamurthy Recursion: The Mirrors B. Ramamurthy CS114A,B.
Data Abstraction and Problem Solving with JAVA Walls and Mirrors Frank M. Carrano and Janet J. Prichard © 2001 Addison Wesley Data Abstraction and Problem.
Recursion Chapter 10 Carrano, Data Structures and Abstractions with Java, Second Edition, (c) 2007 Pearson Education, Inc. All rights reserved X.
Recursion Chapter 10 Slides by Steve Armstrong LeTourneau University Longview, TX  2007,  Prentice Hall.
CSC 205 Programming II Lecture 8 Recursion.
Recursion CENG 707.
Chapter Topics Chapter 16 discusses the following main topics:
Recursion CENG 707.
Chapter 15 Recursion.
Recursion: The Mirrors
Recursion: The Mirrors
Towers of Hanoi Move n (4) disks from pole A to pole C
Chapter 15 Recursion.
Recursion: The Mirrors
Recursion Chapter 11.
Recursion: The Mirrors
Recursion: The Mirrors
Chapter 3 :Recursion © 2011 Pearson Addison-Wesley. All rights reserved.
Recursion: The Mirrors
Presentation transcript:

Chapter 2 Recursion: The Mirrors

© 2005 Pearson Addison-Wesley. All rights reserved2-2 Recursive Solutions Recursion is an extremely powerful problem-solving technique –Breaks a problem in smaller identical problems –An alternative to iteration, which involves loops A sequential search is iterative –Starts at the beginning of the collection –Looks at every item in the collection in order

© 2005 Pearson Addison-Wesley. All rights reserved2-3 Recursive Solutions A binary search is recursive –Repeatedly halves the collection and determines which half could contain the item –Uses a divide and conquer strategy

© 2005 Pearson Addison-Wesley. All rights reserved2-4 Recursive Solutions Facts about a recursive solution –A recursive method calls itself –Each recursive call solves an identical, but smaller, problem –A test for the base case enables the recursive calls to stop Base case: a known case in a recursive definition –Eventually, one of the smaller problems must be the base case

© 2005 Pearson Addison-Wesley. All rights reserved2-5 Recursive Solutions Four questions for construction recursive solutions –How can you define the problem in terms of a smaller problem of the same type? –How does each recursive call diminish the size of the problem? –What instance of the problem can serve as the base case? –As the problem size diminishes, will you reach this base case?

© 2005 Pearson Addison-Wesley. All rights reserved2-6 A Recursive void Method: Writing a String Backward Problem –Given a string of characters, write it in reverse order Recursive solution –Each recursive step of the solution diminishes by 1 the length of the string to be written backward –Base case: write the empty string backward

© 2005 Pearson Addison-Wesley. All rights reserved2-7 A Recursive void Method: Writing a String Backward Figure 2.6 A recursive solution

© 2005 Pearson Addison-Wesley. All rights reserved2-8 Implementation: Writing a String Backward (Recursive) void writeBackward(string s, int size) { // Precondition: The string s contains size // characters, where size >= 0. // Postcondition: s is written backward, but // remains unchanged. if (size > 0) { // write the last character cout << s.substr(size-1, 1); // write the rest of the string backward writeBackward(s, size-1); } // size == 0 is the base case - do nothing }

© 2005 Pearson Addison-Wesley. All rights reserved2-9 Implementation: Writing a String Backward (Iterative) void writeBackward(string s, int size){ // Iterative version. while (size > 0){ cout << s.substr(size-1, 1); --size; }

© 2005 Pearson Addison-Wesley. All rights reserved2-10 Multiplying Rabbits (The Fibonacci Sequence) “Facts” about rabbits –Rabbits never die –A rabbit reaches sexual maturity exactly two months after birth, that is, at the beginning of its third month of life –At the beginning of every month, each sexually mature male-female pair gives birth to exactly one male-female pair

© 2005 Pearson Addison-Wesley. All rights reserved2-11 Multiplying Rabbits (The Fibonacci Sequence) Problem –How many pairs of rabbits are alive in month n? Recurrence relation rabbit(n) = rabbit(n-1) + rabbit(n-2)

© 2005 Pearson Addison-Wesley. All rights reserved2-12 Multiplying Rabbits (The Fibonacci Sequence) Figure 2.10 Recursive solution to the rabbit problem

© 2005 Pearson Addison-Wesley. All rights reserved2-13 Multiplying Rabbits (The Fibonacci Sequence) Base cases –rabbit(2), rabbit(1) Recursive definition rabbit(n) = 1if n is 1 or 2 rabbit(n-1) + rabbit(n-2)if n > 2 Fibonacci sequence –The series of numbers rabbit(1), rabbit(2), rabbit(3), and so on

© 2005 Pearson Addison-Wesley. All rights reserved2-14 Implementation: Multiplying Rabbits (Recursive) int rabbit(int n){ // Precondition: n is a positive integer. // Postcondition: Returns the nth Fibonacci // number. if (n <= 2) return 1; else // n > 2, so n-1 > 0 and n-2 > 0 return rabbit(n-1) + rabbit(n-2); }

© 2005 Pearson Addison-Wesley. All rights reserved2-15 Implementation: Multiplying Rabbits (Iterative) int iterativeRabbit(int n){ // Iterative solution to the rabbit problem. // initialize base cases: int previous = 1; // initially rabbit(1) int current = 1; // initially rabbit(2) int next = 1; // result when n is 1 or 2 // compute next rabbit values when n >= 3 for (int i = 3; i <= n; ++i){ // current is rabbit(i-1), previous is rabbit(i-2) next = current + previous; // rabbit(i) previous = current; // get ready for current = next; // next iteration } return next; }

© 2005 Pearson Addison-Wesley. All rights reserved2-16 Organizing a Parade Problem –How many ways can you organize a parade of length n? –The parade will consist of bands and floats in a single line –One band cannot be placed immediately after another

© 2005 Pearson Addison-Wesley. All rights reserved2-17 Organizing a Parade Let: –P(n) be the number of ways to organize a parade of length n –F(n) be the number of parades of length n that end with a float –B(n) be the number of parades of length n that end with a band Then –P(n) = F(n) + B(n)

© 2005 Pearson Addison-Wesley. All rights reserved2-18 Organizing a Parade Number of acceptable parades of length n that end with a float –F(n) = P(n-1) Number of acceptable parades of length n that end with a band –B(n) = F(n-1) Number of acceptable parades of length n –P(n) = P(n-1) + P(n-2)

© 2005 Pearson Addison-Wesley. All rights reserved2-19 Organizing a Parade Base cases P(1) = 2(The parades of length 1 are float and band.) P(2) = 3(The parades of length 2 are float-float, band-float, and float- band.)

© 2005 Pearson Addison-Wesley. All rights reserved2-20 Organizing a Parade Solution P(1) = 2 P(2) = 3 P(n) = P(n-1) + P(n-2) for n > 2

© 2005 Pearson Addison-Wesley. All rights reserved2-21 Searching an Array: Finding the Largest Item in an Array A recursive solution if (anArray has only one item) { maxArray(anArray) is the item in anArray } else if (anArray has more than one item) { maxArray(anArray) is the maximum of maxArray(left half of anArray) and maxArray(right half of anArray) } // end if

© 2005 Pearson Addison-Wesley. All rights reserved2-22 Searching an Array: Finding the Largest Item in an Array Figure 2.13 Recursive solution to the largest-item problem

© 2005 Pearson Addison-Wesley. All rights reserved2-23 Binary Search A high-level binary search if (anArray is of size 1) { Determine if anArray’s item is equal to value } else { Find the midpoint of anArray Determine which half of anArray contains value if (value is in the first half of anArray) { binarySearch (first half of anArray, value) } else { binarySearch(second half of anArray, value) } // end if

© 2005 Pearson Addison-Wesley. All rights reserved2-24 Binary Search Implementation issues: –How will you pass “half of anArray ” to the recursive calls to binarySearch ? –How do you determine which half of the array contains value? –What should the base case(s) be? –How will binarySearch indicate the result of the search?

© 2005 Pearson Addison-Wesley. All rights reserved2-25 Organizing Data: The Towers of Hanoi Figure 2.19a and b a) The initial state; b) move n - 1 disks from A to C

© 2005 Pearson Addison-Wesley. All rights reserved2-26 The Towers of Hanoi Figure 2.19c and d c) move one disk from A to B; d) move n - 1 disks from C to B

© 2005 Pearson Addison-Wesley. All rights reserved2-27 The Towers of Hanoi Pseudocode solution solveTowers(count, source, destination, spare) if (count is 1) { Move a disk directly from source to destination } else { solveTowers(count-1, source, spare, destination) solveTowers(1, source, destination, spare) solveTowers(count-1, spare, destination, source) } //end if

© 2005 Pearson Addison-Wesley. All rights reserved2-28 Recursion and Efficiency Some recursive solutions are so inefficient that they should not be used Factors that contribute to the inefficiency of some recursive solutions –Overhead associated with method calls –Inherent inefficiency of some recursive algorithms Do not use a recursive solution if it is inefficient and there is a clear, efficient iterative solution