Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up.

Slides:



Advertisements
Similar presentations
2.1 Inductive Reasoning Ojectives:
Advertisements

Using Inductive Reasoning to Make Conjectures 2-1
Do Now Try to extend the following patterns. What would be next? 1.January, March, May …. 2.7, 14, 21, 28, …. 3.1, 4, 9, 16, …. 4.1, 6, 4, 9, 7, 12, 10,
Lesson 2.1 Inductive Reasoning in Geometry
Objectives Students will…
Using Inductive Reasoning to Make Conjectures
Geometry Using Inductive reasoning to Make Conjectures
When several examples form a pattern and you assume the pattern will continue, you are applying inductive reasoning. Inductive reasoning is the process.
Biconditional Statements and Definitions 2-4
What is Critical Thinking?
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up.
Reasoning and Conditional Statements Advanced Geometry Deductive Reasoning Lesson 1.
Inductive/Dedu ctive Reasoning Using reasoning in math and science.
Using Inductive Reasoning to Make Conjectures 2-1
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Use inductive reasoning to identify patterns and make conjectures. Find counterexamples.
Using Inductive Reasoning to Make Conjectures 2-1
Patterns & Inductive Reasoning
Warm Up Complete each sentence. 1. ? points are points that lie on the same line. 2. ? points are points that lie in the same plane. 3. The sum of the.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Find the next item in the pattern. Example 1A: Identifying a Pattern January,
1.2 Inductive Reasoning. Inductive Reasoning If you were to see dark, towering clouds approaching what would you do? Why?
Holt Geometry 2-1 Using Inductive Reasoning to Make Conjectures Warm Up Boxed In Three boxes contain two coins each. One contains two nickels, one contains.
Chapter Using inductive reasoning to make conjectures.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up.
Unit 01 – Lesson 08 – Inductive Reasoning Essential Question  How can you use reasoning to solve problems? Scholars will  Make conjectures based on inductive.
Entry Task Complete each sentence. 1. ? points are points that lie on the same line. 2. ? points are points that lie in the same plane. 3. The sum of the.
Holt McDougal Geometry 2-2 Conditional Statements 2-2 Conditional Statements Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
Reasoning, Conditionals, and Postulates Sections 2-1, 2-3, 2-5.
Lesson 1.2 Inductive Reasoning Pages Observe Look for patterns Develop a hypothesis (or conjecture) Test your hypothesis.
2.1 Inductive Reasoning Objectives: I CAN use patterns to make conjectures. disprove geometric conjectures using counterexamples. 1 Serra - Discovering.
2.1 Using Inductive Reasoning to Make Conjectures.
Using Inductive Reasoning to Make Conjectures Geometry Farris 2015.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Use inductive reasoning to identify patterns and make conjectures. Find counterexamples.
MID CHAPTER 2 QUIZ REVIEW SECTIONS 2.1, 1.4-5, 2.5.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Toolbox Pg. 77 (11-15; 17-22; 24-27; 38 why 4 )
Conditional Statements
2.1 Inductive Reasoning Essential Question:
Conditional Statements
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Biconditional Statements and Definitions 2-4
Conditional Statements
Biconditional Statements and Definitions 2-4
02-2: Vocabulary inductive reasoning conjecture counterexample
OPENER.
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Vocabulary inductive reasoning conjecture counterexample
2.1 Using Inductive Reasoning to Make Conjectures
Using Inductive Reasoning to Make Conjectures 2-1
Biconditional Statements and Definitions 2-4
Five step procedure for drawing conclusions.
Patterns and Inductive Reasoning
Drill 1, 3, 5, 7, 9, __, __ 2, 5, 8, 11, 14, __, __ -3, -6, -10, -15, __ , , , __ OBJ: SWBAT use inductive reasoning in order to identify.
Conditional Statements
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
2-1: Logic with Inductive Reasoning
Using Inductive Reasoning to Make Conjectures 2-1
Biconditional Statements and Definitions 2-4
Notes 2.1 Inductive Reasoning.
Using Inductive Reasoning to Make Conjectures
Using Inductive Reasoning to Make Conjectures 2-1
Patterns and Inductive Reasoning
Using Inductive Reasoning to Make Conjectures
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
2-1 Inductive Reasoning and Conjecture
Presentation transcript:

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz Holt McDougal Geometry

2-1 Using Inductive Reasoning to Make Conjectures Warm Up Complete each sentence. 1. ? points are points that lie on the same line. 2. ? points are points that lie in the same plane. 3. The sum of the measures of two ? angles is 90°. Collinear Coplanar complementary

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Use inductive reasoning to identify patterns and make conjectures. Find counterexamples to disprove conjectures. Objectives

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Find the next item in the pattern. Example 1A: Identifying a Pattern January, March, May,... The next month is July. Alternating months of the year make up the pattern.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Find the next item in the pattern. Example 1B: Identifying a Pattern 7, 14, 21, 28, … The next multiple is 35. Multiples of 7 make up the pattern.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures When several examples form a pattern and you assume the pattern will continue, you are applying inductive reasoning. Inductive reasoning is the process of reasoning that a rule or statement is true because specific cases are true. You may use inductive reasoning to draw a conclusion from a pattern. A statement you believe to be true based on inductive reasoning is called a conjecture.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Complete the conjecture. Example 2A: Making a Conjecture The sum of two positive numbers is ?. The sum of two positive numbers is positive. List some examples and look for a pattern = = , ,000,017 = 1,003,917

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Check It Out! Example 2 The product of two odd numbers is ?. Complete the conjecture. The product of two odd numbers is odd. List some examples and look for a pattern. 1  1 = 1 3  3 = 9 5  7 = 35

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures To show that a conjecture is false, you have to find only one example in which the conjecture is not true. This case is called a counterexample. To show that a conjecture is always true, you must prove it. A counterexample can be a drawing, a statement, or a number.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Inductive Reasoning 1. Look for a pattern. 2. Make a conjecture. 3. Prove the conjecture or find a counterexample.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Show that the conjecture is false by finding a counterexample. Example 4A: Finding a Counterexample For every integer n, n 3 is positive. Pick integers and substitute them into the expression to see if the conjecture holds. Let n = 1. Since n 3 = 1 and 1 > 0, the conjecture holds. Let n = –3. Since n 3 = –27 and –27  0, the conjecture is false. n = –3 is a counterexample.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Show that the conjecture is false by finding a counterexample. Example 4B: Finding a Counterexample Two complementary angles are not congruent. If the two congruent angles both measure 45°, the conjecture is false. 45° + 45° = 90°

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Check It Out! Example 4a For any real number x, x 2 ≥ x. Show that the conjecture is false by finding a counterexample. Let x = The conjecture is false. Since =, ≥

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Check It Out! Example 4c The radius of every planet in the solar system is less than 50,000 km. Show that the conjecture is false by finding a counterexample. Planets’ Diameters (km) MercuryVenusEarthMarsJupiterSaturnUranusNeptune ,10012, ,000121,00051,10049,500 Since the radius is half the diameter, the radius of Jupiter is 71,500 km and the radius of Saturn is 60,500 km. The conjecture is false.

Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Lesson Quiz Find the next item in each pattern , 0.07, 0.007, … Determine if each conjecture is true. If false, give a counterexample. 3. The quotient of two negative numbers is a positive number. 4. Every prime number is odd. 5. Two supplementary angles are not congruent. 6. The square of an odd integer is odd. false; 2 true false; 90° and 90° true