Interactive Rendering of Translucent Deformable Objects Tom Mertens 1, Jan Kautz 2, Philippe Bekaert 1, Hans-Peter Seidel 2, Frank Van Reeth 1 1 2.

Slides:



Advertisements
Similar presentations
A Real Time Radiosity Architecture for Video Games
Advertisements

Signal-Specialized Parametrization Microsoft Research 1 Harvard University 2 Microsoft Research 1 Harvard University 2 Steven J. Gortler 2 Hugues Hoppe.
Ray Tracing Depth Maps Using Precomputed Edge Tables Kevin Egan Rhythm & Hues Studios.
Zhao Dong 1, Jan Kautz 2, Christian Theobalt 3 Hans-Peter Seidel 1 Interactive Global Illumination Using Implicit Visibility 1 MPI Informatik Germany 2.
GI 2006, Québec, June 9th 2006 Implementing the Render Cache and the Edge-and-Point Image on Graphics Hardware Edgar Velázquez-Armendáriz Eugene Lee Bruce.
A Computational Approach to Simulate Light Diffusion in Arbitrarily Shaped Objects Tom Haber, Tom Mertens, Philippe Bekaert, Frank Van Reeth University.
Subsurface scattering
Subsurface scattering Model of light transport in translucent materials Marble, jade, milk, skin Light penetrates material and exits at different point.
Computing 3D Geometry Directly From Range Images Sarah F. Frisken and Ronald N. Perry Mitsubishi Electric Research Laboratories.
Paper Presentation - An Efficient GPU-based Approach for Interactive Global Illumination- Rui Wang, Rui Wang, Kun Zhou, Minghao Pan, Hujun Bao Presenter.
Haptic Rendering using Simplification Comp259 Sung-Eui Yoon.
Real-Time Rendering Paper Presentation Imperfect Shadow Maps for Efficient Computation of Indirect Illumination T. Ritschel T. Grosch M. H. Kim H.-P. Seidel.
An Efficient Representation for Irradiance Environment Maps Ravi Ramamoorthi Pat Hanrahan Stanford University.
CSCE 641: Photon Mapping Jinxiang Chai. Outline Rendering equation Photon mapping.
Direct-to-Indirect Transfer for Cinematic Relighting Milos Hasan (Cornell University) Fabio Pellacini (Dartmouth College) Kavita Bala (Cornell University)
Final Gathering on GPU Toshiya Hachisuka University of Tokyo Introduction Producing global illumination image without any noise.
Exploiting Temporal Coherence for Incremental All-Frequency Relighting Ryan OverbeckRavi Ramamoorthi Aner Ben-ArtziEitan Grinspun Columbia University Ng.
Recent Advances in Radiosity Philippe Bekaert Department of Computer Science K.U.Leuven.
BSSRDF: Bidirectional Surface Scattering Reflectance Distribution Functions Jared M. Dunne C95 Adv. Graphics Feb. 7, 2002 Based on: "A Practical Model.
Seminar 1 Surface Rendering, Decimation Presented By Sonali Barua Date:10/31/2005.
Geometry Image-based Shadow Volume Algorithm for Subdivision Surfaces Min Tang, Jin-Xiang Dong College of Computer Science, Zhejiang University {tang_m,
The Radiosity Method Donald Fong February 10, 2004.
Smooth Geometry Images Frank Losasso, Hugues Hoppe, Scott Schaefer, Joe Warren.
Direct Illumination with Lazy Visibility Evaluation David Hart Philip Dutré Donald P. Greenberg Cornell University SIGGRAPH 99.
Ray Tracing and Photon Mapping on GPUs Tim PurcellStanford / NVIDIA.
FastLSM: Fast Lattice Shape Matching for Robust Real-Time Deformation Alec RiversDoug James Cornell University.
Computer Graphics Group Tobias Weyand Mesh-Based Inverse Kinematics Sumner et al 2005 presented by Tobias Weyand.
Surface Simplification Using Quadric Error Metrics Michael Garland Paul S. Heckbert.
1 Single Scattering in Refractive Media with Triangle Mesh Boundaries Bruce Walter Shuang Zhao Nicolas Holzschuch Kavita Bala Cornell Univ. Grenoble Univ.
Dynamic Meshing Using Adaptively Sampled Distance Fields
Adaptive Real-Time Rendering of Planetary Terrains WSCG 2010 Raphaël Lerbour Jean-Eudes Marvie Pascal Gautron THOMSON R&D, Rennes, France.
Interactive Rendering of Meso-structure Surface Details using Semi-transparent 3D Textures Vision, Modeling, Visualization Erlangen, Germany November 16-18,
Cg Programming Mapping Computational Concepts to GPUs.
By Mahmoud Moustafa Zidan Basic Sciences Department Faculty of Computer and Information Sciences Ain Shams University Under Supervision of Prof. Dr. Taymoor.
Computer Graphics and Multimedia Systems, University of Siegen, Germany 1 GPU-Based Responsive Grass Jens Orthmann, Christof Rezk-Salama, Andreas Kolb.
Efficient Rendering of Local Subsurface Scattering Tom Mertens 1, Jan Kautz 2, Philippe Bekaert 1, Frank Van Reeth 1, Hans-Peter Seidel
Institute of C omputer G raphics, TU Braunschweig Hybrid Scene Structuring with Application to Ray Tracing 24/02/1999 Gordon Müller, Dieter Fellner 1 Hybrid.
An Efficient Representation for Irradiance Environment Maps Ravi Ramamoorthi Pat Hanrahan Stanford University SIGGRAPH 2001 Stanford University SIGGRAPH.
Global Illumination with a Virtual Light Field Mel Slater Jesper Mortensen Pankaj Khanna Insu Yu Dept of Computer Science University College London
1 Photon-driven Irradiance Cache J. BrouillatP. GautronK. Bouatouch INRIA RennesUniversity of Rennes1.
Saarland University, Germany B-KD Trees for Hardware Accelerated Ray Tracing of Dynamic Scenes Sven Woop Gerd Marmitt Philipp Slusallek.
1 Implicit Visibility and Antiradiance for Interactive Global Illumination Carsten Dachsbacher 1, Marc Stamminger 2, George Drettakis 1, Frédo Durand 3.
1 Rendering translucent materials using SSS Implemented by João Pedro Jorge & Willem Frishert.
Quick survey about PRT Valentin JANIAUT KAIST (Korea Advanced Institute of Science and Technology)
Real-time Rendering of Heterogeneous Translucent Objects with Arbitrary Shapes Stefan Kinauer KAIST (Korea Advanced Institute of Science and Technology)
1 Wavelets on Surfaces By Samson Timoner May 8, 2002 (picture from “Wavelets on Irregular Point Sets”) In partial fulfillment of the “Area Exam” doctoral.
Efficient Streaming of 3D Scenes with Complex Geometry and Complex Lighting Romain Pacanowski and M. Raynaud X. Granier P. Reuter C. Schlick P. Poulin.
- Laboratoire d'InfoRmatique en Image et Systèmes d'information
University of Montreal & iMAGIS A Light Hierarchy for Fast Rendering of Scenes with Many Lights E. Paquette, P. Poulin, and G. Drettakis.
Photo-realistic Rendering and Global Illumination in Computer Graphics Spring 2012 Hybrid Algorithms K. H. Ko School of Mechatronics Gwangju Institute.
Pure Path Tracing: the Good and the Bad Path tracing concentrates on important paths only –Those that hit the eye –Those from bright emitters/reflectors.
Real-Time Relief Mapping on Arbitrary Polygonal Surfaces Fabio Policarpo Manuel M. Oliveira Joao L. D. Comba.
VLF Rendering & Implementation Details Virtual Light Field Group University College London GR/R13685/01 Research funded by: Jesper.
CMSC 635 Global Illumination.  Local Illumination  light – surface – eye  Throw everything else into ambient  Global Illumination  light – surface.
Non-Linear Kernel-Based Precomputed Light Transport Paul Green MIT Jan Kautz MIT Wojciech Matusik MIT Frédo Durand MIT Henrik Wann Jensen UCSD.
Fast Global Illumination Including Specular Effects Xavier Granier 1 George Drettakis 1 Bruce J. Walter 2 1 iMAGIS -GRAVIR/IMAG-INRIA iMAGIS is a joint.
Controlling Memory Consumption of Hierarchical Radiosity with Clustering iMAGIS -GRAVIR/IMAG-INRIA iMAGIS is a joint project of CNRS/INRIA/UJF/INPG Xavier.
Global Illumination (3) Photon Mapping (1). Overview Light Transport Notation Path Tracing Photon Mapping –Photon Tracing –The Photon Map.
Radiance Cache Splatting: A GPU-Friendly Global Illumination Algorithm P. Gautron J. Křivánek K. Bouatouch S. Pattanaik.
Sub-Surface Scattering Real-time Rendering Sub-Surface Scattering CSE 781 Prof. Roger Crawfis.
Light Animation with Precomputed Light Paths on the GPU László Szécsi, TU Budapest László Szirmay-Kalos, TU Budapest Mateu Sbert, U of Girona.
Precomputation aided GI on the GPU László Szirmay-Kalos.
Shuen-Huei Guan Seminar in CMLab, NTU
STBVH: A Spatial-Temporal BVH for Efficient Multi-Segment Motion Blur
Homework #3 Environment Lights
Radiosity Sung-Eui Yoon (윤성의) CS580: Course URL:
Smoother Subsurface Scattering
A Practical Model for Subsurface Light Transport
Interactive Sampling and Rendering for Complex and Procedural Geometry
Real-time Global Illumination with precomputed probe
Presentation transcript:

Interactive Rendering of Translucent Deformable Objects Tom Mertens 1, Jan Kautz 2, Philippe Bekaert 1, Hans-Peter Seidel 2, Frank Van Reeth 1 1 2

Overview Goal Previous work Translucency model Our method Implementation Discussion, results and future work

Problem: Translucency BRDFBSSRDF

Previous work Jensen et al. (SIGGRAPH ’01): –BSSRDF model Jensen et al. (SIGGRAPH ’02): –fast, production quality rendering Lensch et al. (PG ’02), Hao et al. (GI ’03), Carr et al. (GHW’03), Sloan et al. (SIGGRAPH’02-’03): –interactive, real-time rendering with precomputation Our paper: –interactive rendering –varying geometry and material (no precomputation)

BSSRDF model function of distance introduced by Jensen et al. (SIGGRAPH’01) multiple scattering materials with high albedo: marble, milk, wax, skin,…

BSSRDF model function of distance introduced by Jensen et al. (SIGGRAPH’01) multiple scattering materials with high albedo: marble, milk, wax, skin,…

Integrating the BSSRDF hierarchical approach (Jensen et al. ‘02) –decouple light and surface sampling, –decouple light sampling from geometry –2-pass method: irradiance sampling – integration with octree –limitation: rebuilding samples & octree our method –integration ~ hierarchical radiosity mesh based: beneficial for geometry updates hierarchy = clustered triangles form factor for BSSRDF: fast local integration

Our Method boundary element method

Our Method boundary element method discretized irradiance discretized radiance

Our Method boundary element method form factor discretized irradiance discretized radiance

example

sample irradiance

pull irradiance

link roots

subdivide link

subdivide link again

gather

push

Hierarchical Evaluation hierarchy = clustered triangles –tree hierarchy subdivision: 4-to-1 splits face clustering evaluation ~ hierarchical radiosity 1.irradiance sampling + pull 2.construct link hierarchy 3.gather over each link 4.push + average at vertices “oracle” = solid angle interactions at different levels –speed advantage

Form Factor: (mid)point to triangle semi-analytical –Taylor expansion advantages: –fast –accurate –noiseless indispensable for local integration more distant: 1 sample area integral integral over edges recursive midpoint

Form Factor: point to triangle semi-analytical –Taylor expansion advantages: –fast –accurate –noiseless indispensable for local integration more distant: 1 sample

Form Factor: point to triangle semi-analytical –Taylor expansion advantages: –fast –accurate –noiseless indispensable for local integration more distant: 1 sample point samplingform factor

Implementation stored links –incremental updates –promote/demote links –real-time frame rate render on-the-fly –instant feedback –less memory overhead –interactive frame rate irradiance –point light (+ shadow) –environment map GPU –fresnel –tone mapping –shadow map

Results 5-10 fps for 10-20K tris models –dual Xeon 2.4Ghz; ATI Radeon 9700 Demo video material changecandle twistshadow leakPerlin noise deformation

Discussion practical technique for interactive applications speed advantage over previous hierarchical algorithm: –gathering in higher levels –efficient local integration –consistent hierarchy after deformation limitation = mesh –needs hierarchy –limited by resolution –fixed topology interactive applications often mesh-based anyway

Future Work recycle radiosity techniques –adaptive meshing, high order interpolation,… –improved oracle function varying topology full GPU implementation non-homogeneous media

Acknowledgements Jens Vorsatz (mesh hierarchies) P. Debevec (light probes) funding: –European Regional Development Fund –Marie Curie doctoral fellowship