THE BAIKAL NEUTRINO EXPERIMENT: STATUS, SELECTED PHYSICS RESULTS, AND PERSPECTIVES Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for.

Slides:



Advertisements
Similar presentations
Lake Baikal Neutrino Experiment Present and Future G.V.Domogatsky (INR, Moscow) for the Baikal collaboration.
Advertisements

Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
AMANDA Lessons Antarctic Muon And Neutrino Detector Array.
10/7/2003C.Spiering, VLVNT Workshop1. 10/7/2003C.Spiering, VLVNT Workshop2  With the aim of constructing a detector of km3 scale in the Northern hemisphere,
Kay Graf University of Erlangen for the ANTARES Collaboration 13th Lomonosov Conference on Elementary Particle Physics Moscow, August 23 – 29, 2007 Acoustic.
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
IceCube 1400 m 2400 m AMANDA South Pole IceTop Skiway 80 Strings 4800 PMT Instrumented volume: 1 km3 (1 Gt) IceCube is designed to detect neutrinos of.
The IceCube High Energy Telesope The detector elements Expected Sensitivity Project Status Shigeru Yoshida Dept. of Physics CHIBA Univ. ICRC 2003.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
MACRO Atmospheric Neutrinos Barry Barish 5 May 00 1.Neutrino oscillations 2.WIMPs 3.Astrophysical point sources.
Prototype string for a km3 Baikal neutrino telescope Roma International Conference on Astroparticle Physics V.Aynutdinov, INR RAS for the Baikal Collaboration.
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
Search for relativistic magnetic monopoles with the Baikal Neutrino Telescope E. Osipova -MSU (Moscow) for the Baikal Collaboration (Workshop, Uppsala,
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
KM3NeT The Birth of a Giant V. Popa, KM3NeT Collaboration Institute for Space Sciences, Magurele-Bucharest, Romania.
Hanoi, Aug. 6-12, 2006 Pascal Vernin 1 Antares Status report P.Vernin CEA Saclay, Dapnia On behalf of the Antares collaboration P.Vernin
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
1 S. E. Tzamarias Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Readout Electronics DAQ & Calibration.
Moscow, V. Aynutdinov, INR RAS for Baikal collaboration The Baikal neutrino telescope: The Baikal neutrino telescope: Physics results and future.
Status of KM3NeT (Detector Design Optimisations) Christopher Naumann, CEA Saclay – IRFU / SPP for the KM3NeT consortium 44 th Reconcontres de Moriond,
Antoine Kouchner Université Paris 7 Laboratoire APC - CEA/Saclay for the ANTARES collaboration Neutrino Astronomy: a new look at the Galaxy Astronomy Neutrino.
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
Piera Sapienza – VLVNT Workshop, 5-8 october 2003, Amsterdam Introduction and framework Simulation of atmospheric  (HEMAS and MUSIC) Response of a km.
SINP MSU, July 7, 2012 I.Belolaptikov behalf BAIKAL collaboration.
Data acquisition system for the Baikal-GVD neutrino telescope Denis Kuleshov Valday, February 3, 2015.
Baikal Neutrino Experiment Vladimir Aynutdinov for the Baikal Collaboration Athens, October 13, 2009.
Байкальский нейтринный эксперимент Г.В.Домогацкий 1 23 декабря 2009г. Москва.
Physics results and perspectives of the Baikal neutrino project B. Shoibonov (JINR, Dubna) for the Baikal collaboration February 2009.
CIPANP 2006K. Filimonov, UC Berkeley From AMANDA to IceCube: Neutrino Astronomy at the South Pole Kirill Filimonov University of California, Berkeley.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
KM3NeT International Solvay Institutes 27  29 May 2015, Brussels, Belgium. Maarten de Jong Astro-particle and Oscillations Research with Cosmics in the.
STATUS OF BAIKAL NEUTRINO EXPERIMENT: Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for the Baikal Collaboration HECR’ May.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
AMANDA. Latest Results of AMANDA Wolfgang Rhode Universität Dortmund Universität Wuppertal for the AMANDA Collaboration.
Status of the Baikal Neutrino Telescope NT200+ VLVNT2 Workshop, Catania, Ralf Wischnewski DESY, Zeuthen Outline: - Motivation / Methods - The.
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
IceCube Galactic Halo Analysis Carsten Rott Jan-Patrick Huelss CCAPP Mini Workshop Columbus OH August 6, m 2450 m August 6, 20091CCAPP DM Miniworkshop.
The AMANDA-II Telescope - Status and First Results - Ralf Wischnewski / DESY-Zeuthen for the AMANDA Collaboration TAUP2001, September.
Status and Results Elisa Bernardini DESY Zeuthen, Germany VLVnT Workshop Amsterdam, Oct (
R. Coniglione, VLVnT08, Toulon April ‘08 KM3NeT: optimization studies for a cubic kilometer neutrino detector R. Coniglione P. Sapienza Istituto.
Baikal-GVD: status and plans Denis Kuleshov Denis Kuleshov INR, Moscow, Oct 28, 2015.
Tunka Experiment: Towards 1км 2 EAS Cherenkov Array B.K.Lubsandorzhiev for TUNKA Collaboration.
Gigaton Volume Detector in Lake Baikal: status of the project Zh.-A. Dzhilkibaev (INR, Moscow) Zh.-A. Dzhilkibaev (INR, Moscow) for the Baikal Collaboration.
The BAIKAL Neutrino Telescope: Results and Plans 19 th ERCS, Florence, Italy,September 3 rd, 2004 Ralf Wischnewski DESY-Zeuthen.
Large-scale Underwater/ice Neutrino Telescopes G. Domogatsky (INR RAN, Moscow)
BAIKAL-GVD: status, results and plans Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration Amsterdam, October 17,
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
The BAIKAL Neutrino Telescope: from NT200 to NT th ICRC Pune, India, Ralf Wischnewski DESY-Zeuthen.
A Device for Detection of Acoustic Signals from Super High Energy Neutrinos Presenter: Presenter: G.L.Pan'kov Applied Physics Institute of Irkutsk State.
Nearly vertical muons from the lower hemisphere in the Baikal neutrino experiment Zh. Dzhilkibaev - INR (Moscow) for the Baikal Collaboration ( Uppsala,
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
The BAIKAL-GVD project of a km3-scale neutrino telescope in Lake Baikal Vladimir Aynutdinov for the Baikal Collaboration Beijing, 17 August, International.
Status and Perspectives of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration September.
Gigaton Volume Detector in Lake Baikal Vladimir Aynutdinov for the Baikal Collaboration Cassis, May 3, th International Workshop on Ring Imaging.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
High energy neutrino acoustic detection activities in Lake Baikal: status and plans N.Budnev for the Baikal Collaboration Irkutsk State University, Russia.
Prototyping Phase of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration Rome, May,
The prototype string for the km3 scale Baikal neutrino telescope VLVnT April 2008 Vladimir Aynutdinov, INR RAS for the Baikal Collaboration for.
Imaging the Neutrino Universe with AMANDA and IceCube
Status of the Baikal-GVD experiment
Status of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow),
Data acquisition system for the Baikal-GVD neutrino telescope
An expected performance of Dubna neutrino telescope
The Antares Neutrino Telescope
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
Baikal-GVD (technical report)
Performance of the AMANDA-II Detector
Diffuse neutrino flux J. Brunner CPPM ESA/NASA/AVO/Paolo Padovani.
MC studies of the KM3NeT physics performance Rezo Shanidze
Presentation transcript:

THE BAIKAL NEUTRINO EXPERIMENT: STATUS, SELECTED PHYSICS RESULTS, AND PERSPECTIVES Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for the Baikal Collaboration VLVnT April 2008

Collaboration  Institute for Nuclear Research, Moscow, Russia.  Irkutsk State University, Russia.  Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia.  DESY-Zeuthen, Zeuthen, Germany.  Joint Institute for Nuclear Research, Dubna, Russia.  Nizhny Novgorod State Technical University, Russia.  St.Petersburg State Marine University, Russia.  Kurchatov Institute, Moscow, Russia.

Baikal Outline: Introduction Neutrino telescope NT200 ( ) Design and Physics Results (selected) Future Gigaton-Volume (km3-scale) detector BAIKAL-GVD Preliminary Design NT200 upgrade  NT200+ ( ) Prototype string for BAIKAL-GVD detector (April 2008) Summary

Baikal - History Since 1980 Site tests and early R&D started 1989/90 Proposal NT200 detector in lake Baikal submitted NT NT36 started (36 PMTs at 3 strings) The First Underwater Array First Neutrino Candidates NT200 commissioned NT200 commissioned Start full Physics program NT200+ commissioned NT200+ commissioned /7 R&D for Gigaton (km3-scale) Volume Detector (GVD) 2008 April prototype string for GVD was installed2008 April prototype string for GVD was installed

The Site 4 cables x 4km to shore. 1070m depth 3600 m 1366 m NT-200 Absorption length: ~25m Scattering length: m Detection volume >> geometrical volume

Ice stable for 6-8 weeks/year: –Maintenance & upgrades –Test & installation of new equipment Winches used for deployment

-8 strings: 192 optical modules  96 measuring channels  T, Q measure *Timing ~ 1 nsec *Dyn. Range ~ 10 3 ph.e. Effective area: 1 TeV~2000m² Eff. shower volume: 10TeV~ 0.2Mt Quasar : d = 37cm Height x  = 70m x 40m, V inst =10 5 m 3

Low energy phenomena (muons) - Atmospheric neutrinos High energy phenomena (cascades) Diffuse neutrino flux - Diffuse neutrino flux - Neutrinos from GRB - Prompt muons and neutrinos Search for exotic particles - Magnetic monopoles - WIMP Selected Results

Atmospheric Muon-Neutrinos Skyplot of NT200 neutrino events for 5 years (galactic coordinates) 372 Neutrinos in 1038 Days ( ) 385 events from Monte-Carlo E THR GeV

( Lake Baikal (NT200) & South Pole (Amanda) Complete sky coverage including central parts of Galaxy Lake Baikal South Pole Skyplot of neutrino events Atmospheric Muon-Neutrinos

 +   b + b C +  +  no osc. osc. upward going muons Angular distribution of upward going muons as well as background expectation (502 days) Limits on the excess muon flux from the center of the Earth as a function of WIMP mass Search of nearly vertically upward going muons, exceeding the flux of atmospheric neutrinos WIMP Search 24 ev.

Search for fast monopoles N   = n 2 (g/e) 2 N   =8300 N   (g = 137/2, n = 1.33) ~E  =10 7 GeV Event selection criteria: 1.Hit channel multiplicity N hi t > 35 ch 2. Upward-going monopole  (z i -z)(t i -t)/(  t  z ) > 0.45 &  o Background - atmospheric muons Limit on a flux of relativistic monopoles:  < cm -2 sec -1 sr -1 90% C.L. upper limit on the flux of fast monopole (994 livedays) Amanda II (preliminary)

NT200 large effective volume NT200 is used to watch the volume below for cascades.  („BG“) Search for extraterrestrial high energy neutrinos Look for upward moving light fronts. Signal: isolated cascades from neutrino interactions Background : Bremsshowers from h.e. downward muons

Experimental limits + bounds/ predictions Diffuse Neutrino Flux Limits + Models NT200 (1038 days) no statistically significant excess above the background from atmospheric muons has been observed The 90% C.L. “all flavour” limit (1038 days) for a  =2 spectrum Ф ~ E -2 (20 TeV < E < 50 PeV), and assuming e :  :  = 1  1  1 at Earth ( 1  2  0 at source ) E 2 Ф <8.1·10 -7 GeV cm -2 s -1 sr -1 (Baikal 2006)

Searching for diffuse neutrinos based on cascades reconstruction Energy distribution of experimental (1999), as well as generated and reconstructed events from atmospheric muons Cascade reconstruction:  lgE ~ 10%;  r ~ (5-10)%;  o Selection conditions: E>100 TeV, N hit >18 Cut E>100 TeV old cut Hit channel multiplicity Expected limit (1038 days) for E -2 spectrum: E -2  ~ 4 ·10 -7 GeV cm -2 s -1 sr -1 (twice lower than old one)

Ultimate goal of Baikal Neutrino Project: Gigaton (km3) Volume Detector in Lake Baikal Sparse instrumentation: 91 – 100 strings with 12 – 16 OMs (1300 – 1700 OMs) - effective volume for >100 TeV cascades: ~ km³  lg  E) ~ 0.1,  med  < 5 o - detects muons with energy > TeV 624 m 280m 70m 120m 208m

NT200+ (2005) 36 additional PMTs on 3 far ‘strings‘  4 times better sensitivity  Improve cascade reconstruction Vgeom ~ 4 ·10 6 m 3 Eff. shower volume: 10 4 TeV ~ 10 Mton Expected -sensitivity (3 yrs NT200+) E 2 Ф V < 2 · GeV cm -2 s -1 sr -1 Basic building block of Gigaton Volume Detector - Height = 210m - = 200m -  = 200m - Volume ~ 5 Mton NT200+ = NT outer strings

Calibration and time synchronisation with laser 100m X2 X1 X3 100m  Laser is visible >200m with high Ampl. (NT200 and Ext.strings) Laser intensity : cascade energy: (10 12 – )  : (10 – 500) PeV NT200+ time resolution

NT200+ efficiency of cascade reconstruction Laser coordinates reconstruction NT200 NT extern. str.  r < 1 m (E cascades  10 PeV)

Prototype string km3-scale BAIKAL telescope NT200+ current status Prototype string Installation of a “new technology” prototype string as a part of NT200+ (8 April 2008)  Investigations and in-situ tests of basic elements of km3 detector: optical modules, DAQ system, new cable communications.  Studies of basic DAQ/Triggering approach for the km3-detector.  Confrontation of classical TDC/ADC approach with FADC readout.

Design of Prototype string FADC data are transmitted through an Ethernet line to PC unit String PC connected through DSL-modem to central NT200+ control unit Control of OM and LED flasher through RS-485 underwater bus (coax. cable) 60 m 8-ch 12-bit 200 MHz FADC unit Trigger: - 1…4-fold OM coin. - outer NT200+ trig. OM power supply control Ethernet data line OM signal & power – 1 coax. cable PMT: XP1807 (Photonis, 12”), R8055 (Hamamatsu 13”) HV : PHV12-2.0K DC-DC conv. VIP-2A (Irkutsk) DC-DC OM controller: - microcontroller C8051F124 - RS-485 interface - PM pulse counter - HV control & monitor - 2-LED calibration

Basic parameters of prototype string prototype string Number of optical modules: 6 Number of spectrometrical channels: 8 Type of PMT: XP1807 (12”), R8055 (13”) Dynamic range: high gain chan. 0.2 … ~100 p.e (*) low gain chan. 0.5 … ~300 p.e. Time window: 5 mks Time resolution: < 5 ns (*) – range of spectrometrical channel linearity

String control center: LED flasher FADC unit PC unit

Optical module installation: UP-looking OM DOWN-looking OM

Prototype string in-situ tests (LED flasher) Time shift estimation with LED flasher: time difference between neighbored OMs OM#1 OM#2 OM#3 OM#4 OM#5 OM# ~20 m coax cable ~20 m A, V Example of LED flasher event PRELIMINARY ~20 m coax cable ~20 m

Prototype string in-situ tests (Laser event) OM#1 OM#2 OM#3 OM#4 OM#5 OM#6 50 m LASER Example of laser event with time shift correction PRELIMINARY

Prototype string in-situ tests (muon event) Example of down-going muon event Trigger: 3-fold coincidence OM#1 OM#2 OM#3 OM#4 OM#5 OM# PRELIMINARY ?

CONCLUSION 1. BAIKAL lake experiment is 1. BAIKAL lake experiment is successfully running since The First Underwater Array - First Neutrino Candidates - Some HE neutrino production models already ruled out by the experiments 2. NEW configuration NT200+ starts work at April 2005 and is successfully operating now. - Improved cascade reconstruction - NT200+ gives good possibilities to optimise the design and to investigate the key elements of future Gton scale detector 3. Start R&D for Gigaton Volume (km3-scale) Detector (BAIKAL-GVD) - A “new technology” prototype string was installed: 6 OMs with 12”/13” - Preliminary in-situ tests of the prototype string with underwater laser, LED flasher and muons shows good performance of all string elements.

END

Cable communications Time synchronization with NT200+: 2 coaxial cable, Request & Acknowledgment Connection to shore: DSL 2-wire line, 1 Mbit OM slow control: RS-485 bus on the basis of coaxial cable FADC and PC unit connection: Ethernet on the basis 2 coaxial cables OM signal & power supply: individual coaxial cable to each module Time calibration with LED flasher: individual optical fiber to each module

OM#2, low gain channel Examples of laser events for 5 laser intensities I1I2 I3 I4I5 OM#1 OM#2 OM#3 OM#4 OM#5 OM#6 50 m LASER Prototype string in-situ tests Laser RUN: events rate vs. time. 5 laser intensities: I1, I2,…,I5. I i /I i+1 ~ 2.5…3 PRELIMINARY