Chapter 5 – System Modeling Lecture 1 1Chapter 5 System modeling.

Slides:



Advertisements
Similar presentations
Chapter 5 – System Modeling
Advertisements

System Modelling System modelling helps the analyst to understand the functionality of the system and models are used to communicate with customers. Different.
©Ian Sommerville 2006Software Engineering, 8th edition. Chapter 8 Slide 1 System models.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 8 Slide 1 System models.
Modified from Sommerville’s originalsSoftware Engineering, 7th edition. Chapter 8 Slide 1 System models.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 8 Slide 1 System models September 29, 2008.
Modified from Sommerville’s originalsSoftware Engineering, 7th edition. Chapter 8 Slide 1 System models.
Copyright 2004 Prentice-Hall, Inc. Essentials of Systems Analysis and Design Second Edition Joseph S. Valacich Joey F. George Jeffrey A. Hoffer Appendix.
Chapter 5 – System Modeling 1Chapter 5 System modeling.
Chapter 5 System modeling Chapter 5 – System Modeling Lecture 1 1.
Structured Vs. Object Oriented Analysis and Design SAD Vs. OOAD
Structured Vs. Object Oriented Analysis and Design SAD Vs. OOAD
Sequence diagrams Chapter 5 Sommerville. Sequence diagrams Sequence diagrams are part of the UML and are used to model the interactions between the actors.
Chapter 5 – System Modeling 1Chapter 5 System modeling.
Chapter 5 – System Modeling Lecture 1 1Chapter 5 System modeling.
Chapter 5 – System Modeling
Chapter 5 – System Modeling
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 1 System models l Abstract descriptions of systems whose requirements are being.
Chapter 4 System Models A description of the various models that can be used to specify software systems.
System models Abstract descriptions of systems whose requirements are being analysed Abstract descriptions of systems whose requirements are being analysed.
Lecture 6 Systems Modeling
Chapter 5 – System Modeling
Copyright 2001 Prentice-Hall, Inc. Essentials of Systems Analysis and Design Joseph S. Valacich Joey F. George Jeffrey A. Hoffer Appendix A Object-Oriented.
Chapter 5 – System Modeling
©Ian Sommerville 1995/2000 (Modified by Spiros Mancoridis 1999) Software Engineering, 6th edition. Chapter 7 Slide 1 System models l Abstract descriptions.
Chapter 5 – System Modeling 1Chapter 5 System modeling CS 425 October 13, 2011 Ian Sommerville, Software Engineering, 9 th Edition Pearson Education, Addison-Wesley.
Copyright 2002 Prentice-Hall, Inc. Chapter 2 Object-Oriented Analysis and Design Modern Systems Analysis and Design Third Edition Jeffrey A. Hoffer Joey.
Chapter 7 System models.
Slide 1 System models. Slide 2 Objectives l To explain why the context of a system should be modelled as part of the RE process l To describe behavioural.
System models l Abstract descriptions of systems whose requirements are being analysed.
Pertemuan 19 PEMODELAN SISTEM Matakuliah: D0174/ Pemodelan Sistem dan Simulasi Tahun: Tahun 2009.
Modified by Juan M. Gomez Software Engineering, 6th edition. Chapter 7 Slide 1 Chapter 7 System Models.
Software Engineering, 8th edition Chapter 8 1 Courtesy: ©Ian Somerville 2006 April 06 th, 2009 Lecture # 13 System models.
Sommerville 2004,Mejia-Alvarez 2009Software Engineering, 7th edition. Chapter 8 Slide 1 System models.
Chapter 5 System Modeling (2/2) Yonsei University 2 nd Semester, 2014 Sanghyun Park.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 14 Slide 1 Object-oriented Design.
Basic OOP Concepts and Terms. In this class, we will cover: Objects and examples of different object types Classes and how they relate to objects Object.
Chapter 5 – System Modeling Chapter 5 System Modeling1 CS 425 October 20, 2015 Ian Sommerville, Software Engineering, 10 th Edition Pearson Education,
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 8 Slide 1 System models.
Chapter 5 – System Modeling 1Chapter 5 System modeling CS 425 October 18, 2010 Ian Sommerville, Software Engineering, 9 th Edition Pearson Education, Addison-Wesley.
Chapter 5 – System Modeling
Unit 4 – System Modeling 1Chapter 5 System modeling.
Chapter 5 System Modeling. What is System modeling? System modeling is the process of developing abstract models of a system, with each model presenting.
Chapter 5 System Modeling (1/2) Yonsei University 2 nd Semester, 2015 Sanghyun Park.
Chapter 5 – System Modeling Chapter 5 System Modeling130/10/2014.
Software Engineering Lecture 6 – System Modelling
Chapter 5 – System Modeling Lecture 9 Section A 27/4/2015 Section B 29/4/2015 1Chapter 5 System modeling.
 To explain why the context of a system should be modelled as part of the RE process  To describe behavioural modelling, data modelling and object modelling.
Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall Appendix A Object-Oriented Analysis and Design A.1.
Lecturer: Eng. Mohamed Adam Isak PH.D Researcher in CS M.Sc. and B.Sc. of Information Technology Engineering, Lecturer in University of Somalia and Mogadishu.
Chapter 4 – System Modeling Lecture 1 1Chapter 5 System modeling.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 8 Slide 1 System models.
Engineering, 7th edition. Chapter 8 Slide 1 System models.
EKT 421 SOFTWARE ENGINEERING
Chapter 5 – System Modeling
Chapter 5 System Modeling
CompSci 280 S Introduction to Software Development
Chapter 5 System modeling
The Movement To Objects
Chapter 5 – System Modeling
Chapter 5 – System Modeling
System Modeling Chapter 4
System models October 5, 2005.
Chapter 5 – System Modeling
Appendix A Object-Oriented Analysis and Design
CS310 Software Engineering Dr.Doaa Sami
Chapter 5 – System Modeling
Chapter 5 – System Modeling
Chapter 4 System Modeling.
Chapter 5 – System Modeling
Presentation transcript:

Chapter 5 – System Modeling Lecture 1 1Chapter 5 System modeling

Topics covered  Context models  Interaction models  Structural models  Behavioral models  Model-driven engineering 2Chapter 5 System modeling

System modeling  System modeling is the process of developing abstract models of a system, with each model presenting a different view or perspective of that system.  System modeling has now come to mean representing a system using some kind of graphical notation, which is now almost always based on notations in the Unified Modeling Language (UML).  System modelling helps the analyst to understand the functionality of the system and models are used to communicate with customers. 3Chapter 5 System modeling

System perspectives  An external perspective, where you model the context or environment of the system.  An interaction perspective, where you model the interactions between a system and its environment, or between the components of a system.  A structural perspective, where you model the organization of a system or the structure of the data that is processed by the system.  A behavioral perspective, where you model the dynamic behavior of the system and how it responds to events. 4Chapter 5 System modeling

UML diagram types  Activity diagrams, which show the activities involved in a process or in data processing.  Use case diagrams, which show the interactions between a system and its environment.  Sequence diagrams, which show interactions between actors and the system and between system components.  Class diagrams, which show the object classes in the system and the associations between these classes.  State diagrams, which show how the system reacts to internal and external events. 5Chapter 5 System modeling

Context models  Context models are used to illustrate the operational context of a system - they show what lies outside the system boundaries.  Social and organisational concerns may affect the decision on where to position system boundaries.  Architectural models show the system and its relationship with other systems. 6Chapter 5 System modeling

The context of the MHC-PMS 7Chapter 5 System modeling

Process model of involuntary detention 8Chapter 5 System modeling

Interaction models  Modeling user interaction is important as it helps to identify user requirements.  Modeling system-to-system interaction highlights the communication problems that may arise.  Modeling component interaction helps us understand if a proposed system structure is likely to deliver the required system performance and dependability.  Use case diagrams and sequence diagrams may be used for interaction modeling. 9Chapter 5 System modeling

Use case modeling  Use cases were developed originally to support requirements elicitation and now incorporated into the UML.  Each use case represents a discrete task that involves external interaction with a system.  Actors in a use case may be people or other systems.  Represented diagramatically to provide an overview of the use case and in a more detailed textual form. 10Chapter 5 System modeling

Transfer-data use case  A use case in the MHC-PMS 11Chapter 5 System modeling

Use cases in the MHC-PMS involving the role ‘Medical Receptionist’ 12Chapter 5 System modeling

Sequence diagrams  Sequence diagrams are part of the UML and are used to model the interactions between the actors and the objects within a system.  A sequence diagram shows the sequence of interactions that take place during a particular use case or use case instance.  The objects and actors involved are listed along the top of the diagram, with a dotted line drawn vertically from these.  Interactions between objects are indicated by annotated arrows. 13Chapter 5 System modeling

Sequence diagram for View patient information 14Chapter 5 System modeling

Sequence diagram for Transfer Data 15Chapter 5 System modeling

Structural models  Structural models of software display the organization of a system in terms of the components that make up that system and their relationships.  Structural models may be static models, which show the structure of the system design, or dynamic models, which show the organization of the system when it is executing.  You create structural models of a system when you are discussing and designing the system architecture. 16Chapter 5 System modeling

Class diagrams  Class diagrams are used when developing an object- oriented system model to show the classes in a system and the associations between these classes.  An object class can be thought of as a general definition of one kind of system object.  An association is a link between classes that indicates that there is some relationship between these classes.  When you are developing models during the early stages of the software engineering process, objects represent something in the real world, such as a patient, a prescription, doctor, etc. 17Chapter 5 System modeling

UML classes and association 18Chapter 5 System modeling

Classes and associations in the MHC-PMS 19Chapter 5 System modeling

The Consultation class 20Chapter 5 System modeling

Chapter 5 – System Modeling Lecture 2 21Chapter 5 System modeling

Generalization  Generalization is an everyday technique that we use to manage complexity.  Rather than learn the detailed characteristics of every entity that we experience, we place these entities in more general classes (animals, cars, houses, etc.) and learn the characteristics of these classes.  This allows us to infer that different members of these classes have some common characteristics e.g. squirrels and rats are rodents. Chapter 5 System modeling22

Generalization  In modeling systems, it is often useful to examine the classes in a system to see if there is scope for generalization. If changes are proposed, then you do not have to look at all classes in the system to see if they are affected by the change.  In object-oriented languages, such as Java, generalization is implemented using the class inheritance mechanisms built into the language.  In a generalization, the attributes and operations associated with higher-level classes are also associated with the lower-level classes.  The lower-level classes are subclasses inherit the attributes and operations from their superclasses. These lower-level classes then add more specific attributes and operations. Chapter 5 System modeling23

A generalization hierarchy 24Chapter 5 System modeling

A generalization hierarchy with added detail 25Chapter 5 System modeling

Behavioral models  Behavioral models are models of the dynamic behavior of a system as it is executing. They show what happens or what is supposed to happen when a system responds to a stimulus from its environment.  You can think of these stimuli as being of two types:  Data Some data arrives that has to be processed by the system.  Events Some event happens that triggers system processing. Events may have associated data, although this is not always the case. 26Chapter 5 System modeling

An activity model of the insulin pump’s operation 27Chapter 5 System modeling

Order processing 28Chapter 5 System modeling

Model driven architecture  Model-driven architecture (MDA) was the precursor of more general model-driven engineering  MDA is a model-focused approach to software design and implementation that uses a subset of UML models to describe a system.  Models at different levels of abstraction are created. From a high-level, platform independent model, it is possible, in principle, to generate a working program without manual intervention. Chapter 5 System modeling29

Types of model  A computation independent model (CIM)  These model the important domain abstractions used in a system. CIMs are sometimes called domain models.  A platform independent model (PIM)  These model the operation of the system without reference to its implementation. The PIM is usually described using UML models that show the static system structure and how it responds to external and internal events.  Platform specific models (PSM)  These are transformations of the platform-independent model with a separate PSM for each application platform. In principle, there may be layers of PSM, with each layer adding some platform-specific detail. Chapter 5 System modeling30