Specular reflectivity and off-specular scattering

Slides:



Advertisements
Similar presentations
Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven Huelva 09/11/2011 IntroductionREX-ISOLDEResultsThe future Transfer reactions at ISOLDE:
Advertisements

Optical Modeling of a-Si:H Thin Film Solar Cells with Rough Interfaces Speaker : Hsiao-Wei Liu 08/18/2010 Wed.
GIANT MAGENTORESISCANCE AND MAGNETIC PROPERTIES OF ELECTRODEPOSITED Ni-Co-Cu/Cu MULTILAYERS.
Ion Beam Analysis techniques:
Sandip Argekar Specular reflectivity – Examples and applications.
1 Cross-plan Si/SiGe superlattice acoustic and thermal properties measurement by picosecond ultrasonics Y. Ezzahri, S. Grauby, S. Dilhaire, J.M. Rampnouz,
Scattering property of rough surface of silicon solar cells Bai Lu a, b, *,Wu Zhensen a, Tang Shuangqing a and Pan Yongqiang b a School of Science, Xidian.
Nanowire Presentation Alexandra Ford 4/9/08 NSE 203/EE 235.
GaAs radiation imaging detectors with an active layer thickness up to 1 mm. D.L.Budnitsky, O.B.Koretskaya, V.A. Novikov, L.S.Okaevich A.I.Potapov, O.P.Tolbanov,
IPCMS-GEMME, BP 43, 23 rue du Loess, Strasbourg Cedex 2
Röntgenbeugung und Röntgenstreuung an Multilagenschichten mit diskontinuierlichen Grenzflächen David Rafaja Institut für Metallkunde Struktur und Gefüge.
Tuesday, May 15 - Thursday, May 17, 2007
Onset of non-colinear coupling in Fe/Cr trilayers observed at high temperatures S.M. Van Eek D. Aernout B. Croonenborghs J. Meersschaut M. Rots Instituut.
Formation of 2D crystalline surface phases on liquid Au-based metallic glass forming alloys S. Mechler, P. S. Pershan, S. E. Stoltz, S. Sellner Department.
UV laser-induced damage to grazing- incidence metal mirrors M. S. Tillack, J. Pulsifer, K. Sequoia 4th US-Japan Workshop on Laser-Driven Inertial Fusion.
1 Optical Properties of Materials … reflection … refraction (Snell’s law) … index of refraction Index of refraction Absorption.
Neutron Scattering 102: SANS and NR
Quantum Dots: Confinement and Applications
Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada.
Chapter 8 Ion Implantation Instructor: Prof. Masoud Agah
Quantum Electronic Effects on Growth and Structure of Thin Films P. Czoschke, Hawoong Hong, L. Basile, C.-M. Wei, M. Y. Chou, M. Holt, Z. Wu, H. Chen and.
Chapter 12. Interaction of Light and Sound
Problems with Bragg-Brentano diffractometer geometry Multilayer optics.
Slide # 1 SPM Probe tips CNT attached to a Si probe tip.
CPD and other imaging technics for gas sensor Mizsei, János 18-28/05/2006 Ustron Budapest University of Technology and Economics, Department of Electron.
Attenuation by absorption and scattering
December 2, 2011Ph.D. Thesis Presentation First principles simulations of nanoelectronic devices Jesse Maassen (Supervisor : Prof. Hong Guo) Department.
Optical and structural properties of RF- sputtered Si x C 1-x thin films International Conference on Nano-Materials and Renewable Energies International.
Daniel Wamwangi School of Physics
Stanford Synchrotron Radiation Laboratory More Thin Film X-ray Scattering: Polycrystalline Films Mike Toney, SSRL 1.Introduction (real space – reciprocal.
Update to End to End LSST Science Simulation Garrett Jernigan and John Peterson December, 2004 Status of the Science End-to-End Simulator: 1. Sky Models.
X-rays techniques as a powerful tool for characterisation of thin film nanostructures Elżbieta Dynowska Institute of Physics Polish Academy of Sciences,
Nanowires and Nanorings at the Atomic Level Midori Kawamura, Neelima Paul, Vasily Cherepanov, and Bert Voigtländer Institut für Schichten und Grenzflächen.
D.-A. Luh, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, S. Harvey, R. E. Kirby, T. Maruyama, and C. Y. Prescott Stanford Linear Accelerator.
SUPERLATTICE PHOTOCATHODES: An Overview Tarun Desikan PPRC, Stanford University
Surface Plasmon Resonance
Unit 12: Part 1 Physical Optics: The Wave Nature of Light.
1 Use of gratings in neutron instrumentation F. Ott, A. Menelle, P. Humbert and C. Fermon Laboratoire Léon Brillouin CEA/CNRS Saclay.
Ferroelectric Nanolithography Extended to Flexible Substrates Dawn A. Bonnell, University of Pennsylvania, DMR Recent advances in materials synthesis.
1 Use of gratings in neutron instrumentation F. Ott, A. Menelle, P. Humbert and C. Fermon Laboratoire Léon Brillouin CEA/CNRS Saclay.
Si/SiGe(C) Heterostructures S. H. Huang Dept. of E. E., NTU.
Quantum Beating Patterns in the Surface Energy of Pb Film Nanostructures Peter Czoschke, Hawoong Hong, Leonardo Basile and Tai-Chang Chiang Frederick Seitz.
Scattering Rates for Confined Carriers Dragica Vasileska Professor Arizona State University.
The Muppet’s Guide to: The Structure and Dynamics of Solids XRD.
X-Ray Reflectivity Measurement
Confinement-deconfinement Transition in Graphene Quantum Dots P. A. Maksym University of Leicester 1. Introduction to quantum dots. 2. Massless electron.
Basics of Ion Beam Analysis
Lecture 21 Optical properties. Incoming lightReflected light Transmitted light Absorbed light Heat Light impinging onto an object (material) can be absorbed,
The Structure and Dynamics of Solids
Effect of Mirror Defect and Damage On Beam Quality T.K. Mau and Mark Tillack University of California, San Diego ARIES Project Meeting March 8-9, 2001.
The Muppet’s Guide to: The Structure and Dynamics of Solids Single Crystal Diffraction.
Thermal Properties of Materials
X-Ray Diffraction Analysis of Ⅲ - Ⅴ Superlattices: Characterization, Simulation and Fitting 1 Xiangyu Wu Enlong Liu Mentor: Clement Merckling EPI Group.
By Abdullah Framalawi Aly Abouhaswa Polarized Neutron Spectrometry : Studying nanostructure magnetism with the use of polarized neutron reflectometry.
Stereology approach to snow optics Aleksey V. Malinka Institute of Physics National Academy of Sciences of Belarus.
Controlled fabrication and optical properties of one-dimensional SiGe nanostructures Zilong Wu, Hui Lei, Zhenyang Zhong Introduction Controlled Si and.
The coating thermal noise R&D for the 3rd generation: a multitechnique investigation E. Cesarini 1,2), M.Prato 3), M. Lorenzini 2) 1)Università di Urbino.
Reflectometry Concepts Hanna Wacklin Instrument Scientist European Spallation Source ESS AB Lund, Sweden MAX IV & ESS Lund Malmö Öresund bridge Copenhagen.
Summer School 2012 Marite Cardenas HCØ D312 Neutron reflectivity’s day Today you will learn about specular scattering and non- specular scattering. Scattering.
6 – 9 June 2011, Dortmund, Germany
Interaction between Photons and Electrons
Reflectivity Measurements on Non-ideal Surfaces
BAHIRDAR UNIVERSTY COLLEGE OF SCIENCE DEPARTMENT :MATERIAL SCIENCE AND ENGINNERING PRESENTETON ON: ELLIPSOMETRY INSTRUMENT PREPEARED BY :ZELALEM GETU AMSALE.
X-ray Scattering from Thin Films
Fabrication of Ge quantum dot circle on masked Si substrate
A Concept: Transmitting and Receiving Fiber Optic Signals with Petabit per Second Capacity Tom Juliano ECE-641 February 20, 2003.
David Rafaja Institut für Metallkunde
2005 열역학 심포지엄 Experimental Evidence for Asymmetric Interfacial Mixing of Co-Al system 김상필1,2, 이승철1, 이광렬1, 정용재2 1. 한국과학기술연구원 미래기술연구본부 2. 한양대학교 세라믹공학과 박재영,
Co-Al 시스템의 비대칭적 혼합거동에 관한 이론 및 실험적 고찰
Multiscale Modeling and Simulation of Nanoengineering:
Presentation transcript:

Specular reflectivity and off-specular scattering Tools for roughness investigation Hugues Guerault 15/12/2000

Outline  Introduction  Flat surface/interface - Dynamical theory Layer thickness and electronic density determination  Rough surface/interface - Kinematical theory Roughness and diffuseness (Non-)periodic roughness Differential cross-section Correlation lengths  Investigation geometries Specular reflectivity (specular scan) Off-specular scattering (longitudinal, transverse and detector scans)  Conclusions

Introduction  Increasing ability to structure solids in 1, 2 or 3D at nanoscopic scale Mesoscopic layered superstructures (multilayers, superlattices, layered gratings, quantum wires –and dots)  Perfection depends on Perfection of the superstructure (grating shape, periodicity, layer thickness) Interface quality (roughness, interdiffusion) Crystalline properties (strain, defects, mosaicity,…)  Roughness affects the physical behavior of interfaces Optical : reduces the specular reflectivity – creates diffuse scattering Magnetic : changes the interface magnetization Electronic : disturbs the band structure in semiconductor devices (resistivity)

Dynamical Theory Electric field in layer p Substrate N p+1 p 2 1 0 Air (n=1) ZS Zp hn - + kn Through the layer p (Tp : Translation Matrix) At p,p+1 interface (Rp,p+1 : Refraction Matrix ; pp, mp Fresnel coef.) Transfer Matrix [M]ij M=R01T1R12……………TN-1RNN-1TNRNS Reflection coefficient r=M12/M22 Absolute Reflectivity R=r.r* Transmission coefficient t=1/M22

N=1 , N=2 Single Layer Bilayer 2 oscillation frequencies are evidenced R=r.r* max. each time As Then (Kiessig fringes) Cu thickness CuO2 thickness For <c  Total external reflection For p=0, =c leading to el via Bilayer 2 oscillation frequencies are evidenced

Kinematical Theory Rough interfaces Dynamical theory not appropriated anymore Born approximations No multiple reflections No refraction R function of d/dz Substrate 100 A 300 A TF-1 Disturbance of el at interface

Interface disturbance What kind of disturbance ? Rough interface Diffuse interface 2 Diffuseness / Graded interface Graded composition (electronic density) from j to i layer with l steps

Differential cross-section kin ksc Q q//(x,y) qz Um+1(x,y) Um (x,y) Um (x’,y’) hmideal zm+1 zm Q qz If Then Differential cross-section (detected intensity) depends on p(W=Um(x,y)) (Height distribution at interfaces)

Periodic Roughness Flat substrate Discrete Height Distribution D Pure specular Discrete Height Distribution Kiessig fringes function of D U1 U2 D

Non-periodic Roughness Random Height Distribution Gaussian height distribution Height-Height correlation function Two contributions Specular contribution observed in the specular direction Diffuse contribution observed when Q(x,y)0 +

Correlation Lengths Height-Height correlation function where h : roughness exponent  : lateral correlation length Increasing and decreasing roughness in periodic multilayers  : vertical correlation length No Increasing Partial Identical replication roughness replication replication

Specular reflectivity

Off-specular (diffuse) scattering inaccessible q-area rocking curve 2q=1.5 detector scan w=0.9 Transverse scan (Rocking curve) at 2=2º Si layer (64 nm) on Si substrate s=7 A , h=0.2 , various  Large lateral correlation  at interface  Specular peak Yoneda wings : each time ai or af = ac Yoneda Wings

Longitudinal and detector scans Si (30 nm) // Ge (50 nm) // SiO2 (1.5 nm) Schlomka et al. PRB 51(4) 1995 Offset (longitudinal) scan Detector scan Curve depends on ai (penetration depth) ai < ac No penetration Increasing ai  different modulations Specular contribution of the diffuse scattering Same oscillations than reflectivity curve

Conclusions Grazing Incidence X-Ray Reflection  Surface/interface investigation at atomic scale  Non destructive technique Vertical periodicity & in-plane morphology  Layer thickness, electronic density profile (composition profile)  Surface and interface roughness  In-plane and between plane correlations  No information on the crystalline structure Application 01/2001: Collaboration IKS / VSM / IMEC  Roughness characterization of Co1-xNixSi2 layers (MBE)  Roughness influence on the resistivity