Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005.

Slides:



Advertisements
Similar presentations
Spectroscopy of (Helium) N -Molecule Clusters: Tracing the Onset of Superfluidity Wolfgang Jäger, Wendy Topic, and Yunjie Xu Department of Chemistry, University.
Advertisements

Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Spectra, Structures, and Dynamics of Weakly Bound Clusters from Dimers to Nonamers Wolfgang Jäger Department of Chemistry, University of Alberta.
Microwave spectroscopy of 2-furancarboxylic acid Roman A. Motiyenko, Manuel Goubet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University Lille.
Millimeter-wave Spectroscopy of the Tunneling-rotation Transitions of the D 2 CCD radical M. Ohtsuki, M. Hayashi, K. Harada, K. Tanaka Department of Chemistry,
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
THE CONFORMATIONAL BEHAVIOUR OF GLUCOSAMINE I. PEÑA, L. KOLESNIKOVÁ, C. CABEZAS, C. BERMÚDEZ, M. BERDAKIN, A. SIMAO, J.L. ALONSO Grupo de Espectroscopia.
Ab Initio Calculations of the Ground Electronic States of the C 3 Ar and C 3 Ne Complexes Yi-Ren Chen, Yi-Jen Wang, and Yen-Chu Hsu Institute of Atomic.
Galen Sedo, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota The Dipole Moment of the Sulfuric Acid Monomer.
The inversion motion in the Ne – NH 3 van der Waals dimer studied via microwave spectroscopy Laura E. Downie, Julie M. Michaud and Wolfgang Jäger Department.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
FTIR EMISSION SPECTROSCOPY AND AB INITIO STUDY OF THE TRANSIENT BO AND HBO MOLECULES 65 th Ohio State University International Symposium on Molecular Spectroscopy.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
ULTRAHIGH-RESOLUTION SPECTROSCOPY OF DIBENZOFURAN S 1 ←S 0 TRANSITION SHUNJI KASAHARA 1, Michiru Yamawaki 1, and Masaaki Baba 2 1) Molecular Photoscience.
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)
ROTATIONAL SPECTROSCOPY OF CO SOLVATED WITH PARA-H 2 MOLECULES Paul Raston and Wolfgang Jäger Department of Chemistry, University of Alberta, Edmonton,
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
Ab Initio and Experimental Studies of the E Internal Rotor State of He-CH 3 F Kelly J. Higgins, Zhenhong Yu, and William Klemperer, Department of Chemistry.
High Resolution Microwave Spectra of He N – and (H 2 ) N – Linear Molecule Clusters Wolfgang Jäger Department of Chemistry, University of Alberta, Edmonton,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Millimeter-Wave Spectroscopy of the vdW Bands of He- HCN the Dissociation Limit. Millimeter-Wave Spectroscopy of the vdW Bands of He- HCN Above the Dissociation.
June 25, th International Symposium on Molecular Spectroscopy Hyperfine Resolved Pure Rotational Spectroscopy of ScN, YN, and BaNH (X 1  + ):
Susanna L. Stephens, John Mullaney, Matt Sprawling Daniel P. Zaleski, Nick R. Walker, Antony C. Legon 69 th International Symposium on Molecular Spectroscopy,
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Introduction to Coherence Spectroscopy Lecture 1 Coherence: “A term that's applied to electromagnetic waves. When they "wiggle" up and down together they.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
Millimeter-wave Rotational Spectrum of Deuterated Nitric Acid Rebecca A.H. Butler, Camren Coplan, Department of Physics, Pittsburg State University Doug.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Spectroscopy of (He) N -Molecule Clusters: Tracing the Onset of Superfluidity Yunjie Xu and Wolfgang Jäger Department of Chemistry, University of Alberta,
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Microwave and infrared spectra of urethane
Carlos Cabezas and Yasuki Endo
MICROWAVE OBSERVATION OF THE VAN DER WAALS COMPLES O2-CO
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
FT Microwave and MMW Spectroscopy of the H2-DCN Molecular Complex
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
The Three-dimensional Potential Energy
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
and analysis of hyperfine structure from four quadrupolar nuclei
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005

2 Motivation Stepping stone for the study of larger N 2 O-(H 2 ) N clusters. Possible observation of superfluidity in N 2 O-(pH 2 ) N. Previous studies:  N 2 O-He and N 2 O-H 2 in the infrared region 1,2.  N 2 O-He in the microwave region 3. 1 Tang & McKellar, JCP 117, 2586 (2002); 2 Tang & McKellar, JCP 117, 8308 (2002); 3 Song, Xu, Roy & Jäger, JCP 121, (2004).

3 Nuclear Spin States N 2 O-pH 2 & -oD 2 are expected to exhibit similar behaviors as N 2 O- 4 He. J. Tang & A. R. W. McKellar, JCP, 117, 8308 (2002). pH2pH2 oD2oD2 oH2oH2 pD2pD2 I total = 0 I total = 0,2 I total = 1 j H = 0,2... j H = 0,2… j H = 1,3...

4 Microwave Fourier Transform Spectrometer  Sample cell is a Fabry-Perot microwave cavity.  Pulsed excitation-spontaneous emission technique.  Microwave frequency range from 4 to 26 GHz.  Sample Composition: 0.25% N 2 O, 5% H 2 in He at 7 atm.

5 Observed Rotational Transitions Two a-type and two b-type transitions for 14 N 14 NO-pD 2 and 14 N 15 NO-pD 2. One a-type and two b-type transitions for 15 N 14 NO-pD 2 and 15 N 15 NO-pD 2. One a-type transition for 14 N 14 NO-oH 2. Nuclear quadrupolar hyperfine structures due to 14 N ( I = 1) and pD 2 ( I total = 1) nuclei. J. Tang & A. R. W. McKellar, JCP, 117, 8308 (2002).

6 Energy Level Diagram Energy JKaKcJKaKc

7 J K a K c = Transition of 14 N 14 NO-pD 2 Frequency (MHz) 1,2,3 - 1,2,3 2,3,3 - 1,2,2 1,0,1 - 1,1,2 F 1 ’,F 2 ’,F’- F 1 ”,F 2 ”,F” ,1,2 - 1,1,2 2,3,4 - 1,2,3 1,1,2 - 1,0,1 2,2,2 - 1,1,1 2,2,3 - 1,1,2 1,1,1 - 1,0,1 1,2,3 - 1,2,3

8 J K a K c = Transition of 14 N 14 NO-pD 2 Frequency (MHz) F 1 ’,F 2 ’,F’- F 1 ”,F 2 ”,F” 1,2,3 - 1,2,3 2,2,3 - 1,1,2 0,1,2 - 1,2,3 2,3,3 - 1,2,2 2,3,4 - 1,2,

9 14 N 14 NO-pD 2 Constants *J. Tang & A. R. W. McKellar, JCP, 117, 8308 (2002). ConstantsValues (MHz)ConstantsValues (MHz) A (5)  aa ( 14 N-outer) (2) B (6)  bb ( 14 N-outer) 0.299(6) C (4)  cc ( 14 N-outer) 0.360(6) JJ 0.153*  aa ( 14 N-inner) (3)  JK 2.64*  bb ( 14 N-inner) 0.08(1) KK 0.024*  cc ( 14 N-inner) 0.192(1) JJ *  aa (D 2 ) (5) KK 1.200*  bb (D 2 ) (9)  (kHz) 1.7  cc (D 2 ) 0.235(9)

10 J K a K c = Transition of 14 N 15 NO-pD 2 Frequency (MHz) 1,0 - 1,1 1,2 - 1,1 2,2 - 1,2 2,3 - 1,2 0,1 - 1,2 F 1 ’,F’- F 1 ”,F” 1,1 - 1,0 2,1 - 1,

11 J K a K c = Transition of 14 N 15 NO-pD 2 Frequency (MHz) 0,1 - 1,1 2,3 - 1,2 1,2 - 1,2 F 1 ’,F’- F 1 ”,F”

12 14 N 15 NO-pD 2 Constants ConstantsValues (MHz)ConstantsValues (MHz) A (6)  aa ( 14 N-outer) (2) B (8)  bb ( 14 N-outer) 0.305(2) C (7)  cc ( 14 N-outer) 0.371(4) JJ 0.153*  aa (D 2 ) (1)  JK 2.64*  bb (D 2 ) (6) KK 0.024*  cc (D 2 ) (9) JJ * KK 1.200*  (kHz) 1.6 *J. Tang & A. R. W. McKellar, JCP, 117, 8308 (2002).

13 J K a K c = Transition of 14 N 14 NO-oH 2 Frequency (MHz)

14 Ab initio Calculations Program: MOLPRO Method: CCSD(T) Basis Set: aug-cc-pVTZ Midbond functions: 3s 3p 2d 1f 1g  s,p = 0.9, 0.3, 0.1  d = 0.6, 0.2  f,g = 0.6, 0.2 Basis Set Superposition Error (BSSE) was eliminated by applying the Counterpoise correction.

15 Spatial Configurations H 2 -axis along R H 2 -axis ┴ R & In-plane H 2 -axis ┴ R & Out-of-Plane R θ

16 Potential Energy Surfaces H 2 -axis along R PE= cm -1 R= 4.25 Å θ= 165° PE= cm -1 R= 4.50 Å θ= 0° H 2 -axis ┴ R & In-plane PE= cm -1 R= 3.00 Å θ= 90° PE= cm -1 R= 4.25 Å θ= 180° H 2 -axis ┴ R & Out-of-plane PE= cm -1 R= 3.00 Å θ= 90° PE= cm -1 R= 4.25 Å θ= 180° R (Å) Energies in cm -1

17 Comparison of ab initio & Experimental Data J K a K c ’-J K a K c ” Observed Transitions (MHz) H 2 -axis along R (MHz) H 2 -axis ┴ R & In-plane (MHz) H 2 -axis ┴ R & Out-of-Plane (MHz)

18 Future Work Assign rotational spectra of 14 N 14 NO-oH 2. Observe rotational transitions of N 2 O-pH 2 and N 2 O-oD 2. Create potential energy hybrid surface to predict bound state energies for the N 2 O-H 2 complexes. Measure higher order clusters for all N 2 O-H 2 isotopomers.

19 Acknowledgments Qing Wen Jäger and Xu Groups And YOU!!!