E.g. Find the ratio of intersection of the medians of a triangle. ksoiqk ffoYsl Ndú;fhka ;%sflaKhl uOHia: fPaokh jk wkqmd;h fidhkak. A B C s 1 t 1 D E.

Slides:



Advertisements
Similar presentations
Cross Product Before discussing the second way to “multiply” vectors, we need to talk about matrices… If , then the determinant of A.
Advertisements

Circles – Tangent Lines A tangent line touches a circle at exactly one point. In this case, line t is tangent to circle A. t A.
MAT iafgdalaiaf.a m%fushh. iafgdalaiaf.a m%fushh f uys mDIaG wkql,fha tall wNs,usnh i|yd Ok osYdj, c odrh osf.a jdudj¾: osYdjg.uka lrk úg iqr;a.
MORE Theorems Relating Lines and Planes
Straight Line Higher Maths. The Straight Line Straight line 1 – basic examples Straight line 2 – more basic examplesStraight line 4 – more on medians,
Pairs of Lines Application of Slope
6.3 Parallel Plane Facts Objectives: 1.Recognize lines parallel to planes, parallel lines and skew lines 2.Use properties relating parallel planes and.
1-3 Segments, Rays, Parallel Lines and Planes
Scalar and Vector Fields
Dot Product & Cross Product of two vectors. Work done by a force F s θ θ W = F s cosθ = F · s F s.
Section 9.5: Equations of Lines and Planes
Chapter 9-Vectors Calculus, 2ed, by Blank & Krantz, Copyright 2011 by John Wiley & Sons, Inc, All Rights Reserved.
Chapter 3 : Vectors - Introduction - Addition of Vectors - Subtraction of Vectors - Scalar Multiplication of Vectors - Components of Vectors - Magnitude.
Jeopardy Chapter 1Chapter 2Chapter 3Chapter 4Chapter 5 Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300 Q $400 Q $500.
Chapter 7 Section 1.  Students will write ratios and solve proportions.
Assigned work: pg. 468 #3-8,9c,10,11,13-15 Any vector perpendicular to a plane is a “normal ” to the plane. It can be found by the Cross product of any.
Section 6.6 What we are Learning:
Mathematics. Session Three Dimensional Geometry–1(Straight Line)
Vectors Addition is commutative (vi) If vector u is multiplied by a scalar k, then the product ku is a vector in the same direction as u but k times the.
Vector Space o Vector has a direction and a magnitude, not location o Vectors can be defined by their I, j, k components o Point (position vector) is a.
Main Menu Salas, Hille, Etgen Calculus: One and Several Variables Copyright 2003 © John Wiley & Sons, Inc. All rights reserved. Chapter 12: Vectors Cartesian.
Equations of Lines and Planes
MAT Integration Integration.
Vectors (9) Lines in 3D Lines in 3D Angle between skew lines Angle between skew lines.
Geometry 2-3 Parallel and perpendicular lines. Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
VECTORS AND THE GEOMETRY OF SPACE 12. PLANES Thus, a plane in space is determined by:  A point P 0 (x 0, y 0, z 0 ) in the plane  A vector n that is.
DOT PRODUCT CROSS PRODUCT APPLICATIONS
the folium of Descartes the folium of Descartes is an algebraic curve defined by the equationalgebraic curve When a = 1, parametrically, we can express.
Definitions Parallel lines: Two lines are parallel lines if and only if they do not intersect and are coplanar. Skew Lines: Two lines are skew lines if.
Further vectors. Vector line equation in three dimensions.
Warm-Up 5 minutes 1. Graph the line y = 3x + 4.
Holt McDougal Algebra Slopes of Parallel and Perpendicular Lines Identify and graph parallel and perpendicular lines. Write equations to describe.
3.1 Lines and Angles. Standard/Objectives: Objectives: Identify relationships between lines. Identify angles formed by transversals.
1 Notes 9/4/12 Pairs of Lines. 2 Parallel Lines Parallel lines are coplanar lines that do not intersect. Arrows are used to indicate lines are parallel.
8.4 Proportionality Theorems. Geogebra Investigation 1)Draw a triangle ABC. 2)Place point D on side AB. 3)Draw a line through point D parallel to BC.
3D Lines and Planes.
E.g. Question 7 of Tutorial 1 Show that the vectors, and represents an isosceles triangle. Solution Let, and They represents a triangle. Hence, an isosceles.
FfoYsl ùch / Vector Calculus. ;d;a;aúl ixLHd l=,lfha ixjD; m%dka;rhl isg ;s%udk wjldYhg w¾: oelajqkq ika;;sl Y%s;hlg jl%hla hehs lshkq,efns. A continuous.
MAT Mathematical Tools. wosY lafIa;% ( Scalar fields) w¾: oelaùu wjldYfha huÞ m%foaYhl we;s iEu,laIHhla yd ix>Ü;j wosYhla w¾: olajd we;s úg thg.
The Cross Product. We have two ways to multiply two vectors. One way is the scalar or dot product. The other way is called the vector product or cross.
CHAPTER - 8 MOTION CLASS :- IX MADE BY :- MANAS MAHAJAN SCHOOL :- K.V. GANESHKHIND PUNE-7.
南亚和印度.
Geometry Chapter 3 Review. #1 A CD B #2 AB C D #3 A B C D.
 Segments, Rays, and Parallel Lines.  Segment : is part of a line that has a beginning point and an endpoint.  Written notation. A B.
Extended Work on 3D Lines and Planes. Intersection of a Line and a Plane Find the point of intersection between the line and the plane Answer: (2, -3,
Yashavantrao Chavan Institute of Science Satara. Rayat Shikshan Sanstha’s Rayat Gurukul CET Project Std : XII Sub : -Mathematics.
2.5 Algebra Reasoning. Addition Property: if a=b, then a+c = b+c Addition Property: if a=b, then a+c = b+c Subtraction Property: if a=b, then a-c = b-c.
CHAPTER 3 VECTORS NHAA/IMK/UNIMAP.
Computer Applications I
Problem G-1 Schyler Fennimore.
Application of Vector product
Dot Product and Angle Between Two Vectors
Contents 7.1 Vectors in 2-Space 7.2 Vectors in 3-Space 7.3 Dot Product
Planes in Space.
Chapter 3 VECTORS.
VECTORS APPLICATIONS NHAA/IMK/UNIMAP.
Lines and Planes in Space
Vectors.
Math 200 Week 3 - Monday Planes.
تصنيف التفاعلات الكيميائية
t Circles – Tangent Lines
A#40 Vectors Day 6 Paper #1 Review.
concepts, and examples Lesson Objectives: I will be able to …
Recreational Exponentiation
Chapter 10: Applications of Trigonometry and Vectors
Vector Equations Trig 6.12 Obj: Find the vector equation parallel to a given vector and through a given point.
Find the cross product {image} . {image} .
CHAPTER 3 VECTORS NHAA/IMK/UNIMAP.
Presentation transcript:

E.g. Find the ratio of intersection of the medians of a triangle. ksoiqk ffoYsl Ndú;fhka ;%sflaKhl uOHia: fPaokh jk wkqmd;h fidhkak. A B C s 1 t 1 D E ABC ;s%fldaKhg m%fuÞhh fhoSfuka F ABE ;%sfldaKhg m%fuÞhh fhoSfuka fuS ksid wkqrEm ffoYslhkays ix.=Kl ie,lSfuka 1 2

1 2 1 uOHia: 1:2 wkqmd;hg fPaokh fjS" A B C s 1 D E F kuS

;%s;aj.=Ks;h'/ Triple Product. ffoYsl ;=kla w¾:j;a f,i ;s;a.=Ks;h iy fyda l;sr.=Ks;h iu. fhoSfuka ;%s;aj.=Ks; w¾: olajkq,nhs. The triple products are defined using dot product and cross product meaningfully with three vectors. ;%s;aj.=Ks; / Triple Product ;%s;aj wosY.=Ks;h / Triple scalar product. ;%s;aj ffoYsl.=Ks;h/ Triple vector product.

;%s;aj wosY.=Ks;h / Triple scalar product. ffoYsl ;=ku tlu,laIHfhka wdruSN jk f,i w|suq' OA C D fujeks ;%sudk rEmhlg iudka;rKslrKh ( parallelopipe) hkak Ndú; fjS" ABCD

OA C D iudka;rKslrKfha mrsudj = ABCD. c ;jo tkuS ABCD = iudka;rKslrKfha mrsudj volume of the parallelopiped fus ksid ;jo

;%s;aj ffoYsl.=Ks;h / Triple vector product. X Y Z

Eq 1 Eq 2 So

E.g. Evaluate Let

f¾Ldjl iïlrKh" ( Equation of a line. ) A P O AP = fuh l g iudka;r ksid Vector form of the equation of a line. f¾Ldjl iïlrKfha ffoYsl wdldrh'

f¾Ldjl iïlrKh Symmetric form of the equation. f¾Ldjl iïlrKfha iuñ;sh wdldrh"

Cartesian form of the equation. f¾Ldjl iïlrKfha ldÜishdkq wdldrh'

f¾Ldjl iïlrKh igyk l hkq tall ffoYslhla kus g osYd fldaihsk hehs lsh;s' l hkq tall ffoYslhla fkdjk úg g osYd wkqmd; hehs lsh;s" direction cosines direction ratios

ksoiqk ( 1, 2, 0 ) iy ( 2, 3, 1 ),laIH Tiafia we;s f¾Ldfjs iïlrKh fidhkak' osYd wkqmd; iy osYd fldaihsk fidhkak" A P O A ( 1, 2, 0 ) iy B ( 2, 3, 2 ) hehs.ksuq" f¾LdfjS iïlrKh

f¾LdfjS iïlrKfha iuñ;sh wdldrh' f¾LdfjS iïlrKfha ldÜishdkq wdldrh' ksid osYd wkqmd; ( 1, 1, 1 ) fjs" osYd fldaihsk

ksoiqk ( 1, 3, 3 ) iy ( 2, 1, 0 ),laIH Tiafia we;s f¾Ldfjs iïlrKh fidhkak" A B A ( 1, 3, 3 ) iy B ( 2, 3, 0 ) hehs.ksuq. f¾LdfjS iïlrKh

f¾LdfjS iïlrKfha iuñ;sh wdldrh' f¾LdfjS iïlrKfha ldÜishdkq wdldrh'

f¾Ld foll fPaokh / Intersection of two lines iy f¾Ld fPaokh fjS kuS jk f,i wosY mej;sh hq;=hss' fuúg If the lines and intersect, there exist scalars such that ffoYsl iïlrKh ;Dma; jk f,i wosY mej;sh hq;=hss There exists scalars satisfying the vector equation

ksoiqk iy u.ska fokq,nk f¾Ld fPaokh fjS oehs fidhkak" Find the lines given by and intersect f¾Ld fPaokh fjS kus / If the lines intersect iïlrKh ;Dma; jk f,i wosY mej;sh hq;=hss tl úg ;Dma; jk f,i mej;sh hq;=hss

fuúg wi;H fjs" iïlrK ;Dma; jk f,i wosY fkdmj;S f¾Ld fPaokh fkdfjS. Since there do not exist scalars satisfying above three equations, the given lines do not intersect.

( 2, 1, 3 ) yryd jQ ( 1, 2, 5 ) osYd wkqmd; iys; f¾Ldfjs iïlrKh fidhkak" E.g.Find the equation of the line passes through the point ( 2, 1, 3 ) whose direction ratios is ( 1, 2, 5 ). f¾LdfjS iïlrKh úiªu fus ksid f¾Ldfjs iïlrKh u.ska fokq,nk f¾Ldj iy by; f¾Ldj fPaokh fjS oehs fidhkak"

Find whether the ine given by and the above line intersect by; f¾Ld fPaokh fjS kus 1 2 ;Dma; jk f,i mej;sh hq;=hss 3

2 1 3 fuúg i;H fjs' iïlrK ;Dma; jk f,i wosY mj;S tksid f¾Ld fPaokh fjS" fPaok,laIHh i|yd fPaok,laIHh i|yd ( 0, -3, -7 ) fjs' 1 2 3

ú;, f¾Ld /Skew lines p;=ia;,hla i,lkak. Consider a tetrahedron. A B C D AB iy CD, AC iy BD AD iy BC AB and CD, AC and BD, AD and BC are skew. ú;, fjs. m%;sM,h /Result

ksoiqk iy u.ska fokq,nk f¾Ld ú;, oehs fidhkak' /Find whether above lines are skew. A B f¾Ld tal;, kus tal;, fjs'

fus ksid f¾Ld tal;, fkdjk fyhska f¾Ld ú;, fjs / Since they are not coplanear they are skew.

;s%udkfha f¾Ld Lines in 3d ú;, f¾Ld / skew lines tal;, f¾Ld / coplanar lines iudka;r f¾Ld / parallel lines fPaokh jk f¾Ld / intersecting lines

;,hl iïlrKh" ( Equation of a plane. ) O AP = fuh n g,usnl ksid Vector form of the equation of plane. ;,hl iïlrKfha ffoYsl wdldrh' A P

Vector form of the equation of plane. cartesian form ldÜishdkq wdldrh" fuys

ksoiqk ( 2, 3, 1 ),laIHh yryd g,usnlj we;s ;,fha iïlrKh fidhkak" ;,fha iïlrKh f,i ;,fha iïlrKh,efns' ksoiqk ( -2, 1, 1 ), ( 3, 0, 2 ) iy ( 2, 4, 5 ),laIHh yryd jQ ;,fha iïlrKh fidhkak'

ksoiqk ( -2, 1, 1 ), ( 3, 0, 2 ) iy ( 2, 4, 5 ),laIHh yryd jQ ;,fha iïlrKh fidhkak' A ( -2, 1, 1 ) B ( 3, 0, 2 ) C ( 2, 4, 5 ) AB = AC = ;,hg,usnl ffoYslhla

fus ksid ;,fha iïlrKh fyda ksoiqk P(1,0,0), Q(0,1,0) iy R(0,1,1),laIHh yryd jQ ;,fha iïlrKh fidhkak' Find the Equation of a plane containing the points P(1,0,0), Q(0,1,0) and R(0,1,1).

E.g.Find the Equation of a plane containing the points P(1,0,0), Q(0,1,0) and R(0,1,1). P Q R A A (x, y, z) variable point vectors, and are coplanar.

;, foll fPaokh' fok,o ;, folla iudka;r fyda fPaokh fyda fjS' iy u.ska fokq,nk ;, iudka;r kus fPaokh fjs kus ;, foflys fPaokh ir, f¾Ldjla fjS'

fPaok f¾Ldj ffoYslh fPaokh f¾Ldjg iudka;r fjS' fuS ksid fPaokh f¾Ldj u;,laIHhla fidhd.;a úg fPaokh f¾Ldfjs iïlrKh,nd.; yel"

ksoiqk iy u.ska fokq,nk ;, fPaokh fjS oehs fidhkak' tksid ;, fPaokh fjS' u.ska fokq,nk ;,h i|yd i|yd ;,h u; fmd¥,laIHhla f,i.ksuq' túg

tksid ( 2, 1, 0 ),laIHh ;,h u; fjS" ;,fha iïlrKh