Discrete Mathematics Functions

Slides:



Advertisements
Similar presentations
1.6 Functions. Chapter 1, section 6 Functions notation: f: A B x in A, y in B, f(x) = y. concepts: –domain of f, –codomain of f, –range of f, –f maps.
Advertisements

Functions Rosen 1.8.
Functions Section 2.3 of Rosen Fall 2008
Lecture 3 Set Operations & Set Functions. Recap Set: unordered collection of objects Equal sets have the same elements Subset: elements in A are also.
CSE115/ENGR160 Discrete Mathematics 02/16/12 Ming-Hsuan Yang UC Merced 1.
Functions Goals Introduce the concept of function Introduce injective, surjective, & bijective functions.
1 Section 1.8 Functions. 2 Loose Definition Mapping of each element of one set onto some element of another set –each element of 1st set must map to something,
Inverse Functions Consider the function f illustrated by the mapping diagram. The function f takes the domain values of 1, 8 and 64 and produces the corresponding.
Functions.
Functions. Let A and B be sets A function is a mapping from elements of A to elements of B and is a subset of AxB i.e. can be defined by a set of tuples!
Functions, Sequences, and Sums
Discrete Structures Functions Dr. Muhammad Humayoun Assistant Professor COMSATS Institute of Computer Science, Lahore.
Section 1.8: Functions A function is a mapping from one set to another that satisfies certain properties. We will first introduce the notion of a mapping.
Sets Set Operations Functions. 1. Sets 1.1 Introduction and Notation 1.2 Cardinality 1.3 Power Set 1.4 Cartesian Products.
2.1 Sets 2.2 Set Operations 2.3 Functions ‒Functions ‒ Injections, Surjections and Bijections ‒ Inverse Functions ‒Composition 2.4 Sequences and Summations.
FUNCTION Discrete Mathematics Asst. Prof. Dr. Choopan Rattanapoka.
Mathematics. Session Set, Relation & Function Session - 3.
Foundations of Discrete Mathematics Chapter 3 By Dr. Dalia M. Gil, Ph.D.
February 12, 2015Applied Discrete Mathematics Week 2: Functions and Sequences 1Exercises Question 1: Given a set A = {x, y, z} and a set B = {1, 2, 3,
Functions. Copyright © Peter Cappello2 Definition Let D and C be nonempty sets. A function f from D to C, for each element d  D, assigns exactly 1 element.
Relations, Functions, and Matrices Mathematical Structures for Computer Science Chapter 4 Copyright © 2006 W.H. Freeman & Co.MSCS SlidesFunctions.
Discrete Mathematics and Its Applications Sixth Edition By Kenneth Rosen Copyright  The McGraw-Hill Companies, Inc. Permission required for reproduction.
Fall 2002CMSC Discrete Structures1 … and the following mathematical appetizer is about… Functions.
10/26/20151 … and the following mathematical appetizer is about… Functions.
FUNCTIONS.
Chap. 5 Relations and Functions. Cartesian Product For sets A, B the Cartesian product, or cross product, of A and B is denoted by A ╳ B and equals {(a,
Discrete Mathematics CS 2610 September 12, Agenda Last class Functions  Vertical line rule  Ordered pairs  Graphical representation  Predicates.
Functions Section 2.3 of Rosen Spring 2012 CSCE 235 Introduction to Discrete Structures Course web-page: cse.unl.edu/~cse235 Questions: Use Piazza.
MSU/CSE 260 Fall Functions Read Section 1.8.
Dr. Eng. Farag Elnagahy Office Phone: King ABDUL AZIZ University Faculty Of Computing and Information Technology CPCS 222.
1 Discrete Structures – CNS 2300 Text Discrete Mathematics and Its Applications (5 th Edition) Kenneth H. Rosen Chapter 1 The Foundations: Logic, Sets,
Chapter 1 SETS, FUNCTIONs, ELEMENTARY LOGIC & BOOLEAN ALGEBRAs BY: MISS FARAH ADIBAH ADNAN IMK.
1.4 Sets Definition 1. A set is a group of objects . The objects in a set are called the elements, or members, of the set. Example 2 The set of positive.
Example Prove that: “IF 3n + 2 is odd, then n is odd” Proof by Contradiction: -p = 3n + 2 is odd, q = n is odd. -Assume that ~(p  q) is true OR -(p 
Basic Structures: Functions Muhammad Arief download dari
CSE 2353 – October 1 st 2003 Functions. For Real Numbers F: R->R –f(x) = 7x + 5 –f(x) = sin(x)
Agenda Week 10 Lecture coverage: –Functions –Types of Function –Composite function –Inverse of a function.
CompSci 102 Discrete Math for Computer Science January 31, 2012 Prof. Rodger Slides modified from Rosen AB a b c d x y z.
Functions. L62 Agenda Section 1.8: Functions Domain, co-domain, range Image, pre-image One-to-one, onto, bijective, inverse Functional composition and.
11 DISCRETE STRUCTURES DISCRETE STRUCTURES UNIT 5 SSK3003 DR. ALI MAMAT 1.
11 DISCRETE STRUCTURES DISCRETE STRUCTURES UNIT 5 SSK3003 DR. ALI MAMAT 1.
Discrete Mathematics CS 2610 February 10, Agenda Previously Functions And now Finish functions Start Boolean algebras (Sec. 11.1)
CSC102 - Discrete Structures Functions
CSci 2011 Discrete Mathematics Lecture 9, 10
1 Functions CS 202 Epp section ??? Aaron Bloomfield.
FUNCTIONS COSC-1321 Discrete Structures 1. Function. Definition Let X and Y be sets. A function f from X to Y is a relation from X to Y with the property.
1 Discrete Mathematical Functions Examples.
Discrete Mathematics 3. MATRICES, RELATIONS, AND FUNCTIONS Lecture 6 Dr.-Ing. Erwin Sitompul
1 Lecture 5 Functions. 2 Functions in real applications Curve of a bridge can be described by a function Converting Celsius to Fahrenheit.
Section 2.3. Section Summary  Definition of a Function. o Domain, Cdomain o Image, Preimage  One-to-one (Injection), onto (Surjection), Bijection 
Chapter 2 1. Chapter Summary Sets The Language of Sets - Sec 2.1 – Lecture 8 Set Operations and Set Identities - Sec 2.2 – Lecture 9 Functions and sequences.
FUNCTIONS.
Functions 7/7/2016COCS - Discrete Structures1. Functions A function f from a set A to a set B is an assignment of exactly one element of B to each element.
Functions Section 2.3.
Applied Discrete Mathematics Week 2: Functions and Sequences
Functions.
… and the following mathematical appetizer is about…
Functions.
Discrete Math for Computer Science CSC 281
Functions Section 2.3.
Functions.
CSE15 Discrete Mathematics 02/27/17
CS100: Discrete structures
… and the following mathematical appetizer is about…
Functions CS 202 Epp section 7.1.
Functions.
… and the following mathematical appetizer is about…
Functions Rosen 6th ed., §2.3.
Properties of Functions
Functions Section 2.3.
Presentation transcript:

Discrete Mathematics Functions

Definition of a function A function takes an element from a set and maps it to a UNIQUE element in another set f maps R to Z R Z Domain Co-domain f f(4.3) 4.3 4 Pre-image of 4 Image of 4.3

A string length function More functions The image of “a” A pre-image of 1 Domain Co-domain A B C D F Ayşe Barış Canan Davut Emine A class grade function 1 2 3 4 5 “a” “bb“ “cccc” “dd” “e” A string length function

Also not a valid function! Even more functions Range 1 2 3 4 5 a e i o u Some function… 1 2 3 4 5 “a” “bb“ “cccc” “dd” “e” Not a valid function! Also not a valid function!

Function arithmetic Let f1(x) = 2x Let f2(x) = x2 f1+f2 = (f1+f2)(x) = f1(x)+f2(x) = 2x+x2 f1*f2 = (f1*f2)(x) = f1(x)*f2(x) = 2x*x2 = 2x3

One-to-one functions A function is one-to-one if each element in the co-domain has a unique pre-image Formal definition: A function f is one-to-one if f(x) = f(y) implies x = y. 1 2 3 4 5 a e i o A one-to-one function 1 2 3 4 5 a e i o A function that is not one-to-one

More on one-to-one Injective is synonymous with one-to-one “A function is injective” A function is an injection if it is one-to-one Note that there can be un-used elements in the co-domain 1 2 3 4 5 a e i o A one-to-one function

A function that is not onto Onto functions A function is onto if each element in the co-domain is an image of some pre-image Formal definition: A function f is onto if for all y  C, there exists x  D such that f(x)=y. 1 2 3 4 a e i o u An onto function 1 2 3 4 5 a e i o A function that is not onto

More on onto Surjective is synonymous with onto “A function is surjective” A function is an surjection if it is onto Note that there can be multiply used elements in the co-domain 1 2 3 4 a e i o u An onto function

Onto vs. one-to-one Are the following functions onto, one-to-one, both, or neither? 1 2 3 4 a b c 1 2 3 4 a b c d 1 2 3 4 a b c 1-to-1, not onto Both 1-to-1 and onto Not a valid function 1 2 3 a b c d 1 2 3 4 a b c d Onto, not 1-to-1 Neither 1-to-1 nor onto

Bijections Consider a function that is both one-to-one and onto: Such a function is a one-to-one correspondence, or a bijection 1 2 3 4 a b c d

Identity functions A function such that the image and the pre-image are ALWAYS equal f(x) = 1*x f(x) = x + 0 The domain and the co-domain must be the same set

Inverse functions Let f(x) = 2*x R f R f-1 f(4.3) 4.3 8.6 f-1(8.6) Then f-1(x) = x/2

More on inverse functions Can we define the inverse of the following functions? An inverse function can ONLY be done defined on a bijection 1 2 3 4 a b c 1 2 3 a b c d What is f-1(2)? Not onto! What is f-1(2)? Not 1-to-1!

Compositions of functions (f ○ g)(x) = f(g(x)) f ○ g A B C g f g(a) f(b) a f(g(a)) b = g(a) (f ○ g)(a)

Compositions of functions Let f(x) = 2x+3 Let g(x) = 3x+2 f ○ g R R R g f g(1) f(5) f(g(1))=13 1 g(1)=5 (f ○ g)(1) f(g(x)) = 2(3x+2)+3 = 6x+7

Compositions of functions Does f(g(x)) = g(f(x))? Let f(x) = 2x+3 Let g(x) = 3x+2 f(g(x)) = 2(3x+2)+3 = 6x+7 g(f(x)) = 3(2x+3)+2 = 6x+11 Function composition is not commutative! Not equal!

Useful functions Floor: x means take the greatest integer less than or equal to the number Ceiling: x means take the lowest integer greater than or equal to the number round(x) =  x+0.5 

Ceiling and floor properties Let n be an integer (1a) x = n if and only if n ≤ x < n+1 (1b) x = n if and only if n-1 < x ≤ n (1c) x = n if and only if x-1 < n ≤ x (1d) x = n if and only if x ≤ n < x+1 (2) x-1 < x ≤ x ≤ x < x+1 (3a) -x = - x (3b) -x = - x (4a) x+n = x+n (4b) x+n = x+n

Ceiling property proof Prove rule 4a: x+n = x+n Where n is an integer Will use rule 1a: x = n if and only if n ≤ x < n+1 Direct proof! Let m = x Thus, m ≤ x < m+1 (by rule 1a) Add n to both sides: m+n ≤ x+n < m+n+1 By rule 4a, m+n = x+n Since m = x, m+n also equals x+n Thus, x+n = m+n = x+n

Factorial Factorial is denoted by n! n! = n * (n-1) * (n-2) * … * 2 * 1 Thus, 6! = 6 * 5 * 4 * 3 * 2 * 1 = 720 Note that 0! is defined to equal 1

Proving Function problems Let f be an invertible function from Y to Z Let g be an invertible function from X to Y Show that the inverse of f○g is: (f○g)-1 = g-1 ○ f-1 (Pf) Thus, we want to show, for all zZ and xX ((f  g)  (g-1  f-1)) (x) = x and ((f-1  g-1)  (g  f)) (z) = z ((f  g)  (g-1  f-1)) (x) = (f  g) (g-1  f-1)) (x)) = (f  g) g-1 f-1(x))) = (f g g-1 f-1(x))))) = (f f-1(x)) = x The second equality is similar