Weyl metal: What’s new beyond Landau’s Fermi liquid theory?

Slides:



Advertisements
Similar presentations
Chiral Tunneling and the Klein Paradox in Graphene M. I. Katsnelson, K
Advertisements

APPLIED PHYSICS CODE : 07A1BS05 I B.TECH CSE, IT, ECE & EEE UNIT-3
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Photodetachment microscopy in a magnetic field Christophe Blondel Laboratoire Aimé-Cotton, Centre national de la recherche scientifique, université Paris-
A journey inside planar pure QED CP3 lunch meeting By Bruno Bertrand November 19 th 2004.
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Topological current effect on hQCD at finite density and magnetic field Pablo A. Morales Work in collaboration with Kenji Fukushima Based on Phys. Rev.
Topics in Condensed Matter Physics Lecture Course for graduate students CFIF/Dep. Física Spin-dependent transport theory Vitalii Dugaev Winter semester:
Intrinsic Hall Effects of Electrons and Photons – Geometrical Phenomena in Linear Response Theory Masaru Onoda (CERC-AIST) The 21 st Century COE International.
Quantum anomalous Hall effect (QAHE) and the quantum spin Hall effect (QSHE) Shoucheng Zhang, Stanford University Les Houches, June 2006.
Quantum Spin Hall Effect - A New State of Matter ? - Naoto Nagaosa Dept. Applied Phys. Univ. Tokyo Collaborators: M. Onoda (AIST), Y. Avishai (Ben-Grion)
Spin transport in spin-orbit coupled bands
1 Simulation and Detection of Relativistic Effects with Ultra-Cold Atoms Shi-Liang Zhu ( 朱诗亮 ) School of Physics and Telecommunication.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
Cyclotron Resonance and Faraday Rotation in infrared spectroscopy
PHY 042: Electricity and Magnetism Introduction Prof. Pierre-Hugues Beauchemin.
Topological Insulators and Beyond
Organizing Principles for Understanding Matter
Fluctuation conductivity of thin films and nanowires near a parallel-
Topological Aspects of the Spin Hall Effect Yong-Shi Wu Dept. of Physics, University of Utah Collaborators: Xiao-Liang Qi and Shou-Cheng Zhang (XXIII International.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Quantum Spin Hall Effect and Topological Insulator Weisong Tu Department of Physics and Astronomy University of Tennessee Instructor: Dr. George Siopsis.
UNIT 1 FREE ELECTRON THEORY.
Berry Phase Effects on Electronic Properties
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Chiral Magnetic Effect in Condensed Matter Systems
Magnetothermopower in high-mobility 2D electron gas: effect of microwave irradiation Oleg Raichev Department of Theoretical Physics Institute of Semiconductor.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
Topology induced emergent dynamic gauge theory in an extended Kane-Mele-Hubbard model Xi Luo January 5, 2015 arXiv:
Lesson 6 Magnetic field induced transport in nanostructures.
Quantum critical transport in graphene Quantum critical transport in graphene Lars Fritz, Harvard Joerg Schmalian, Iowa Markus Mueller, Harvard Subir Sachdev,
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
3/23/2015PHY 752 Spring Lecture 231 PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107 Plan for Lecture 23:  Transport phenomena and Fermi liquid.
Topological Insulators
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Quantum Hall transition in graphene with correlated bond disorder T. Kawarabayshi (Toho University) Y. Hatsugai (University of Tsukuba) H. Aoki (University.
Quantum Hall Effect and Fractional Quantum Hall Effect.
University of Washington
Axion electrodynamics on the surface of topological insulators
Dirac’s inspiration in the search for topological insulators
Lattice gauge theory treatment of Dirac semimetals at strong coupling Yasufumi Araki 1,2 1 Institute for Materials Research, Tohoku Univ. 2 Frontier Research.
Realization of Axion Electrodynamics on Topological Insulators Jisoon IhmJisoon Ihm Department of Physics POSTECH June 1, 2016.
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
Igor Lukyanchuk Amiens University
The Hall States and Geometric Phase
Review on quantum criticality in metals and beyond
Igor Luk’yanchuk, Yakov Kopelevich
Fractional Berry phase effect and composite particle hole liquid in partial filled LL Yizhi You KITS, 2017.
Collective Excitations in QCD Plasma
Qian Niu 牛谦 University of Texas at Austin 北京大学
4H-SiC substrate preparation - graphitization
Second semester Grading: homework: 60% term report: 40%  
Topological Insulators
Gauge structure and effective dynamics in semiconductor energy bands
Lecture 1: Semiclassical wave-packet dynamics and the Boltzmann equation Dimi Culcer UNSW.
Quantum phases and critical points of correlated metals
Free electron Fermi gas (Sommerfeld, 1928)
Topological Order and its Quantum Phase Transition
The Free Electron Fermi Gas
Adnan Bashir, UMSNH, Mexico
Correlations of Electrons in Magnetic Fields
Kai Zhu, Shunhao Xiao, Xiaofeng Jin
Landau Quantization and Quasiparticle Interference in the
Optical signature of topological insulator
Chiral anomaly observed as an axial current in two topological quantum materials DMR M. Hirschberger, J. Xiong, S. Kushwaha, A. Bernevig,
The chiral anomaly in a Dirac semimetal
Michael Fuhrer Director, FLEET Monash University
Weiyi Wang, Yanwen Liu, Cheng Zhang, Ping Ai, Faxian Xiu
Gauge theory and gravity
American Physical Society
Presentation transcript:

Weyl metal: What’s new beyond Landau’s Fermi liquid theory? Experiment: Heon-Jung Kim (Daegu Univ.), Ki-Seok Kim (POSTECH), J.-F. Wang (Huazhong Univ.), M. Sasaki (Yamagata Univ.), N. Satoh (Iwaki Meisei Univ.), A. Ohnishi, M. Kitaura, M. Yang, L. Li, Phys. Rev. Lett. 111, 246603 (2013). Boltzmann transport theory: Phys. Rev. B 89, 195137 (2014). A review paper will appear in Science and Technology of Advanced Materials (ISSN 1468-6996). Topological Fermi-liquid theory: Yong-Soo Jho and Ki-Seok Kim (in preparation).

These are not science fictions any more. 𝜌 𝐵 − 𝜌 0 𝜌 0 These are not science fictions any more.

Weyl metal is a topological Fermi-liquid state, described by axion electrodynamics and thus, distinguished from Landau’s Fermi-liquid state.

𝑭 𝒊 𝝈𝝈′ 𝑯 𝒆𝒇𝒇 ( 𝒗 𝒊 𝝈𝝈′ , 𝑭 𝒊 𝝈𝝈′ ,…) 𝒗 𝒊 𝝈𝝈′

Boltzmann transport theory with the Drude model in metals

Landau’s Fermi-liquid theory for metals

Integer quantum Hall Semiconductor Topological semiconductor Topological metal (Fermi liquid) Metal (Fermi liquid)

Topological Fermi-liquid theory = Landau’s Fermi-liquid theory + “topological” term (Berry curvature + chiral anomaly)

Weyl metal B

𝑩𝒆𝒓𝒓𝒚 𝒑𝒉𝒂𝒔𝒆

Two questions for understanding Weyl metal Graphene (2d) vs. Weyl metal (3d) Multiple Fermi surfaces (Fe-pnictides: non-topological) vs. Weyl metal (topological)

More than the Berry curvature

(Quantum) anomalies From classical field theory (symmetry) to quantum field theory (anomaly): Regularization scheme consistent with symmetry Heisenberg (Poisson  Lie) vs. Feynman (Path integral) Renormalizability of quantum field theory Anomalies associated with local (gauge) symmetries must be cancelled for consistency of quantum theory (standard model & string theory). Anomalies associated with global symmetries give rise to fantastic physics. Quantum number fractionalization in solitons (Goldstone-Wilczek currents), deconfined quantum criticality (emergent non-abelian chiral anomaly), gapless boundary states and anomalous (quantized) electrical & thermal (Hall) transport phenomena, … Chiral anomaly (3+1, 1+1), parity anomaly (2+1), Witten anomaly (3+1), …

Adler-Bell-Jackiw anomaly (1d)

Adler-Bell-Jackiw anomaly (3d): Ultra-quantum limit

How to generalize the Drude model for Weyl metal ?

M. A. Stephanov and Y. Yin, Phys. Rev. Lett. 109, 162001 (2012)

Adler-Bell-Jackiw anomaly (3d): Semi-classical regime Phys. Rev. B 88, 104412 (2013) Xiao, D., Chang, M.-C. & Niu, Q., Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010); Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010).

More than the band structure : Chiral anomaly  Axion electrodynamics F. Wilczek, Phys. Rev. Lett. 58, 1799 (1987) Chiral magnetic effect Negative longitudinal magneto-resistivity

Observation of Weyl metal  Confirmation of axion electrodynamics: Negative longitudinal magneto-resistivity

Adler-Bell-Jackiw anomaly right Weyl corn left Weyl corn Dirac corn 𝜌 𝐵 − 𝜌 0 𝜌 0 Adler-Bell-Jackiw anomaly Phys. Rev. Lett. 111, 246603 (2013)

Longitudinal magnetoresistivity 3d weak antilocalization

Theoretical analysis L T

Chiral anomaly allows the dissipationless current channel between the paired Weyl points, reducing electrical resistivity along the direction of the applied magnetic field.

Toward the theoretical description Diagrammatic approach Boltzmann-equation approach Weak anti-localization O X Axion electrodynamics

Boltzmann equation approach with weak anti-localization + Semi-classical equation of motion Xiao, D., Chang, M.-C. & Niu, Q., Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010); Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010).

Anomalous transport in Weyl metal

Longitudinal magneto-resistivity and longitudinal Hall coefficient in Weyl metal Ki-Seok Kim, Heon-Jung Kim, and M. Sasaki, Phys. Rev. B 89, 195137 (2014)

Berry curvature + Axion electrodynamics Can we derive these “effective” coupled Boltzmann equations from a relativistic matrix Boltzmann equation, taking its non-relativistic limit (𝜇≠0) ? Berry curvature + Axion electrodynamics

Toward topological Fermi-liquid theory How to introduce the momentum-space Berry connection into Landau’s Fermi-liquid theory? How to encode axion electrodynamics (chiral anomaly) into Landau’s Fermi-liquid theory?

M. A. Stephanov and Y. Yin, Phys. Rev. Lett. 109, 162001 (2012)

Yong-Soo Jho and Ki-Seok Kim (in preparation)

Derivation of the topological Landau’s Fermi-liquid theory from QED4 under magnetic fields Yong-Soo Jho and Ki-Seok Kim (in preparation)

Longitudinal negative magneto-electrical resistivity from Kubo formula

Weyl metal = A topological Fermi-liquid state  A novel fixed point beyond Landau’s Fermi-liquid theory ?? Yong-Soo Jho and Ki-Seok Kim (in preparation)

𝑭 𝒊 𝝈𝝈′ 𝑯 𝒆𝒇𝒇 ( 𝒗 𝒊 𝝈𝝈′ , 𝑭 𝒊 𝝈𝝈′ ,…) 𝒗 𝒊 𝝈𝝈′ Yong-Soo Jho and Ki-Seok Kim (in preparation) 𝑭 𝒊 𝝈𝝈′ 𝑯 𝒆𝒇𝒇 ( 𝒗 𝒊 𝝈𝝈′ , 𝑭 𝒊 𝝈𝝈′ ,…) 𝒗 𝒊 𝝈𝝈′

Conclusion: Weyl metal  Topological Fermi liquid theory (Berry curvature + Axion electrodynamics) Dirac metal + time reversal (or inversion) symmetry breaking  Weyl metal Experimental observation: Negative longitudinal magneto-electrical resistivity Boltzmann equation approach + semi-classical equations of motion (Berry curvature & Axion electrodynamics) Thermal and thermoelectric responses  Observation of violation of the Wiedemann-Franz law ?? A novel fixed point beyond Landau’s Fermi-liquid theory ??