Calorimetry and finite bath thermodynamics Jukka Pekola, Low Temperature Laboratory Aalto University, Helsinki, Finland.

Slides:



Advertisements
Similar presentations
Dissipated work and fluctuation relations in driven tunneling
Advertisements

Generalized Jarzynski Equality under Nonequilibrium Feedback
Normal metal - superconductor tunnel junctions as kT and e pumps
Josepson Current in Four-Terminal Superconductor/Exciton- Condensate/Superconductor System S. Peotta, M. Gibertini, F. Dolcini, F. Taddei, M. Polini, L.
Low frequency noise in superconducting qubits
Adiabatic Quantum Computation with Noisy Qubits Mohammad Amin D-Wave Systems Inc., Vancouver, Canada.
Sukumar Rajauria Néel Institute, CNRS and Université Joseph Fourier, Grenoble, France With H. Courtois, P. Gandit, T. Fournier, F. Hekking, B. Pannetier.
Operating in Charge-Phase Regime, Ideal for Superconducting Qubits M. H. S. Amin D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM D-Wave Systems Inc.,
Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P.
Quantum charge fluctuation in a superconducting grain Manuel Houzet SPSMS, CEA Grenoble In collaboration with L. Glazman (University of Minnesota) D. Pesin.
Quantum Phase Tunneling in 1D Superconductors K. Arutyunov, M. Zgirski, M. Savolainen, K.-P. Riikonen, V. Touboltsev University of Jyväskylä, Department.
Can dT CMB /dt be Measured? R. V. Duncan University of New Mexico, and Caltech Quarks to Cosmos Workshop Airlie Center, May 23, 2006 Work sponsored by.
Julien Gabelli Bertrand Reulet Non-Gaussian Shot Noise in a Tunnel Junction in the Quantum Regime Laboratoire de Physique des Solides Bât. 510, Université.
JRA2 Ultralow temperature nanorefrigerator AALTO, CNRS, RHUL, SNS, BASEL, DELFT Objectives Thermalizing and filtering electrons in nanodevices To develop.
The Shot Noise Thermometer Lafe Spietz, K.W. Lehnert, I. Siddiqi, R.J. Schoelkopf Department of Applied Physics, Yale University Thanks to: Michel Devoret,
Universal Spin Transport in Strongly Interacting Fermi Gases Ariel Sommer Mark Ku, Giacomo Roati, Martin Zwierlein MIT INT Experimental Symposium May 19,
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara.
Microscopic definition of entropy Microscopic definition of temperature This applies to an isolated system for which all the microstates are equally probable.
Quantum thermodynamics: Thermodynamics at the nanoscale
Metals: Free Electron Model Physics 355. Free Electron Model Schematic model of metallic crystal, such as Na, Li, K, etc.
The sPHENIX Barrel Upgrade: Jet Physics and Beyond John Haggerty Brookhaven National Laboratory on behalf of the PHENIX collaboration Quark Matter 2012.
Single atom lasing of a dressed flux qubit
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
Paraty - II Quantum Information Workshop 11/09/2009 Fault-Tolerant Computing with Biased-Noise Superconducting Qubits Frederico Brito Collaborators: P.
SPEC, CEA Saclay (France),
Quantum Monte-Carlo for Non-Markovian Dynamics Collaborator : Denis Lacroix Guillaume Hupin GANIL, Caen FRANCE  Exact  TCL2 (perturbation)  TCL4  NZ2.
V. Brosco1, R. Fazio2 , F. W. J. Hekking3, J. P. Pekola4
Quantum Trajectories - ”revisiting the past” IICQI-14, Isfahan, Theory: ”Past quantum states”, Phys. Rev. Lett. 111, (2013) Søren Gammelmark,
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Meet the transmon and his friends
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Alireza Shabani, Jan Roden, Birgitta Whaley
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
Noise and decoherence in the Josephson Charge Qubits Oleg Astafiev, Yuri Pashkin, Tsuyoshi Yamamoto, Yasunobu Nakamura, Jaw-Shen Tsai RIKEN Frontier Research.
PICO-group SAB presentation, Nov 9, 2006, Jukka Pekola Dr. Alexander Savin senior scientist Dr. Matthias Meschke research scientist Dr. Juha Vartiainen.
Entanglement for two qubits interacting with a thermal field Mikhail Mastyugin The XXII International Workshop High Energy Physics and Quantum Field Theory.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Adiabatic Quantum Computation with Noisy Qubits M.H.S. Amin D-Wave Systems Inc., Vancouver, Canada.
. What is truly quantum about quantum thermodynamics? Thermodynamic laws and bounds are not well understood for quantum-system manipulations. We challenge:
Efficiency of thermal radiation energy-conversion nanodevices Miguel Rubi I. Latella A. Perez L. Lapas.
PHY1039 Properties of Matter Heat Capacity of Crystalline Solids March 26 and 29, 2012 Lectures 15 and 16.
Temperature and sample dependence of spin echo in SiC Kyle Miller, John Colton, Samuel Carter (Naval Research Lab) Brigham Young University Physics Department.
Optically detected magnetic resonance of silicon vacancies in SiC Kyle Miller, John Colton, Samuel Carter (Naval Research Lab) Brigham Young University.
Cavities and Magnets Working Group Darin Kinion (LLNL) 4/26/2012.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Vortex avalanches in superconductors: Size distribution and Mechanism Daniel Shantsev Tom Johansen andYuri Galperin AMCS group Department of Physics, University.
Fluctuations of Entropy Production in Partially Masked Electric Circuits Chung Yuan Christian University - Physics Seminar, Nov. 4 th, 2015 Yung-Fu Chen.
Measuring Quantum Coherence in the Cooper-Pair Box
Mesoscopic Physics Introduction Prof. I.V.Krive lecture presentation Address: Svobody Sq. 4, 61022, Kharkiv, Ukraine, Rooms. 5-46, 7-36, Phone: +38(057)707.
HIM06-12 SHLee1 Some Topics in Relativistic Heavy Ion Collision Su Houng Lee Yonsei Univ., Korea 1.J. P. Blaizot 2.J. Kapusta 3.U. A. Wiedemann.
On Decoherence in Solid-State Qubits Josephson charge qubits Classification of noise, relaxation/decoherence Josephson qubits as noise spectrometers Decoherence.
Heat Exchange. HOW IS THERMAL ENERGY TRANSFERRED? 3 MECHANISMS: CONDUCTION CONDUCTION CONVECTION CONVECTION RADIATION RADIATION.
Quantum dynamics in nano Josephson junctions Equipe cohérence quantique CNRS – Université Joseph Fourier Institut Néel GRENOBLE Wiebke Guichard Olivier.
Fluctuation relations in Ising models G.G. & Antonio Piscitelli (Bari) Federico Corberi (Salerno) Alessandro Pelizzola (Torino) TexPoint fonts used in.
Stochastic thermodynamics and Fluctuation theorems
Violation of a Bell’s inequality in time with weak measurement SPEC CEA-Saclay IRFU, CEA, Jan A.Korotkov University of California, Riverside A. Palacios-Laloy.
Per Delsing Chalmers University of Technology Quantum Device Physics Interaction between artificial atoms and microwaves Experiments: IoChun Hoi, Chris.
Superconducting artificial atoms coupled to 1D open space
Maxwell's Demon in a circuit - refrigerator powered by information
Circuit QED Experiment
Superconducting Qubits
Normal metal - superconductor tunnel junctions as kT and e pumps
Entropy and Thermodynamic 2nd laws : New Perspective
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Superconducting qubit for quantum thermodynamics experiments
Lesson 1 LT: I can perform calculations based on the concepts involving heat.
Hiroyuki Nojiri, Department of Physics, Okayama University
Fig. 3 Evolution of the temperature difference between a cooling body and a thermal bath or another finite body, which are connected in an experiment using.
Presentation transcript:

Calorimetry and finite bath thermodynamics Jukka Pekola, Low Temperature Laboratory Aalto University, Helsinki, Finland

Calorimetry for measuring the photons Requirements for calorimetry on single microwave quantum level. Photons from relaxation of a superconducting qubit. Typical parameters: Operating temperature T = 0.1 K E/k B = 1 K, C = k B  T ~ mK,  ~ ms NET = 10  K/(Hz) 1/2 is sufficient for single photon detection  E = NET (C G th ) 1/2 JP, P. Solinas, A. Shnirman, and D. V. Averin., NJP 15, (2013).  T = E / C  = C / G th E photon source “artificial atom” absorber temperature readout electronics T(t) V(t)

Fast NIS thermometry on electrons Read-out at 600 MHz of a NIS junction, 10 MHz bandwidth S. Gasparinetti et al., Phys. Rev. Applied 3, (2015); K. L. Viisanen et al., New J. Phys. 17, (2015). Proof of the concept: Schmidt et al., 2003

Josephson thermometer (at 5 GHz) O.-P. Saira, M. Zgirski, D. Golubev, K. Viisanen and JP, arXiv: (2016).arXiv: P(E) theory: Only one fit parameter: R S = 57.4 .

Josephson thermometer (at 5 GHz) Expected 1 K photon resolution

Towards calorimetry of a superconducting qubit J. Senior, O.-P- Saira et al., 2016

Measurement of thermal coupling G th and heat capacity C of a normal wire  E = NET (C G th ) 1/2 Copper and silver thin film wires measured K. L. Viisanen and JP, in preparation (2016).

G th - electron-phonon coupling T (K)  Cu = 2 GW/m 3 K 5 in literature  Ag = 0.5 GW/m 3 K 5 inferred from data of A. Steinbach et al., PRL 1996

Heat capacity C |s 21 | 2 (arb) T bath C,T G th C of copper films is anomalously high (x10) Silver follows free-electron Fermi-gas model C = (  2 /3) N(0)k B 2 V T

Calorimetry on quantum two-level systems: ”errors” 1. Hidden environments/noise sources K. L. Viisanen et al., New J. Phys. 17, (2015). 2. Finite heat capacity of the absorber (non-Markovian) TEMPERATURE TIME T0T0 E T(t) V(t)

Fluctuating energy of a finite bath TT TIME T C,  E,  T ? !

(a) (b) (c) QUBIT TLS- CALORIMETER HO- CALORIMETER TLS- CALORIMETER TLS-BATH DRIVE Simple models of a finite calorimeter J. P. Pekola, S. Suomela, and Y. M. Galperin, arXiv: , J. Low Temp. Phys. (2016). arXiv: J. Low Temp. Phys See also: S. Suomela, A. Kutvonen, T. Ala- Nissila, arXiv: arXiv:

TLS calorimeter and bath: equal level spacing and coupling

Quantum jump trajectories F. Hekking and JP, PRL 111, (2013); J. Horowitz and J. Parrondo, NJP 15, (2013); JP, Y. Masuyama, Y. Nakamura, J. Bergli, and Y. M. Galperin, PRE 91, (2015). Stochastic wave function of the qubit Qubit rates Calorimeter rates Evolution of the qubit state when no jumps occur

Initially: Population of the calorimeter at the end of the drive is enhanced. This has naturally no effect on the fluctuation relations. Overheating of the calorimeter

Distributions of work, Crooks relation Qubit + calorimeter only Initially thermalized Qubit + calorimeter + big bath Initially thermalized Blue – all heat included Black – heat to big bath ignored Line: P(W)/P(-W)=e  W G. Crooks, 1999

More realistic model: resistor bath (free Fermi-gas) E T(t) V(t) For an Ag wire with V = m 3 at T = 100 mK, C/k B < 100 T/T F = Energy fluctuations become strongly non- gaussian in this regime JP, P. Muratore-Ginanneschi, A. Kupiainen, and Yu. M. Galperin, arXiv: arXiv: Analysis of equilibrium energy fluctuations for a free-electron gas with finite heat capacity T C, E

Calculation of the energy distribution

Equilibrium energy distribution Gaussian E 0 corresponds to filled Fermi-sea  

Summary Metallic calorimeters are just about sensitive enough to monitor single microwave photons Fast thermometry and qubit in a cavity tested Anomalous heat capacity of copper vs silver observed Physics of finite heat capacity absorber discussed – work in progress

Collaboration Olli-Pentti Saira (AALTO) Klaara Viisanen (AALTO) Simone Gasparinetti (AALTO, now ETH) Jorden Senior (AALTO) Joonas Peltonen (AALTO) Matthias Meschke (AALTO) Maciej Zgirski (Warsaw) Dmitry Golubev (AALTO) Yuri Galperin (Oslo) Frank Hekking (Grenoble) Joachim Ankerhold (Ulm) Paolo Muratore-Ginanneschi (Univ. Helsinki) Antti Kupiainen (Univ. Helsinki) Samu Suomela (AALTO) Tapio Ala-Nissila (AALTO) Kay Schwieger (Univ. Helsinki)