Cutnell/Johnson Physics 8th edition

Slides:



Advertisements
Similar presentations
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Advertisements

Physics 101: Lecture 16, Pg 1 Physics 101: Lecture 16 Rotational Kinematics l Today’s lecture will cover Textbook Chapter 8.
Warm-up: Centripetal Acceleration Practice
Rotational Motion Chapter Opener. Caption: You too can experience rapid rotation—if your stomach can take the high angular velocity and centripetal acceleration.
Chapter 10 Rotational Motion
Chapter 4. Kinematics in Two Dimensions
Chapter 10. Rotation What is Physics?
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
Rotational Motion Lecturer: Professor Stephen T. Thornton
Chapter 10 Rotational Motion
Halliday/Resnick/Walker Fundamentals of Physics
Circular motion.
Measuring Rotational Motion
Measuring Rotational Motion
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Cutnell/Johnson Physics 7th edition
Rotational Kinematics
Uniform Circular Motion Physics 6A Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
Halliday/Resnick/Walker Fundamentals of Physics
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
ROTATIONAL MOTION.
Physics Ch. 7 Rotational Motion
Circular Motion Kinematics 8.01 W04D1. Today’s Reading Assignment: W04D1 Young and Freedman: 3.4; Supplementary Notes: Circular Motion Kinematics.
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
Chapter 7 Rotational Motion.
Chapters 7 & 8 Rotational Motion and The Law of Gravity.
Angular Position, Velocity and Acceleration
Circular Motion. Questions for Consideration  How do we measure circular motion?  What is a radian?  What are the angular analogs of linear motion?
Chapter 4 Motion in Two and Three Dimensions
Rotational Kinematics and Energy
Lecture 18 Rotational Motion
Finish Momentum Start Spinning Around
Rotational Kinematics
Chapter 8 Rotational Kinematics. 8.1 Rotational Motion and Angular Displacement In the simplest kind of rotation, points on a rigid object move on circular.
Ch 8. Rotational Kinematics
Chapter 8 Rotational Kinematics. The axis of rotation is the line around which an object rotates.
Rotational Kinematics HRK Chapter 8 _Lesson_17/Container.html
Copyright © 2009 Pearson Education, Inc. Lecture 1 Rotational Motion.
Cutnell/Johnson Physics 7th edition Reading Quiz Questions
CIRCULAR MOTION.
Circular Motion Chapter 9. Circular Motion Axis – is the straight line around which rotation takes place. Internal Axis - is located within the body of.
Chapter 8: Rotational Kinematics Essential Concepts and Summary.
Rotational Kinematics. Angular Position Degrees and revolutions: Angular Position θ > 0 θ < 0.
Chapter 8 Rotational Kinematics. Radians Angular Displacement  Angle through which something is rotated  Counterclockwise => positive(+) Units => radians.
PHY131H1F - Class 8 Today, finishing off Chapter 4: Circular Motion Rotation.
Chapter 7 Rotational Motion and The Law of Gravity.
Lecture 15: Rotational Motion. Questions of Yesterday 1) A piece of clay traveling north with speed v collides perfectly inelastically with an identical.
Which of the following angles equals 2p radians?
Chapter 7 Rotational Motion and The Law of Gravity.
Contents: 4-3E, 4-5E, 4-12E, 4-13E*, 4-28P, 4-29E*,
Physics 101: Lecture 8, Pg 1 Centripetal Acceleration and Circular Motion Physics 101: Lecture 08 l Today’s lecture will cover Chapter 5.
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
 If disk angular velocity changes (  is not constant), then we have an angular acceleration   For some point on the disk  From the definition of translational.
Rotational Kinematics
Circular Motion. Rotational Quantities A O r  dAdA A point on an object, located a distance r from a fixed axis of rotation, rotates in such a way that.
In mathematics and physics, a specific form of measurement is used to describe revolution and fractions of revolutions. In one revolution, a point on.
Copyright © 2009 Pearson Education, Inc. Chapter 10 Rotational Motion.
Chapter 7 Rotational Motion and the Law of Gravity.
Ying Yi PhD Chapter 8 Rotational Kinematics 1 PHYS HCC.
Ying Yi PhD Chapter 7 Rotational Motion and the Law of Gravity 1 PHYS HCC.
Lecture 7Purdue University, Physics 2201 UNIMPORTABLE: #817EE11E, 4.00 #8279AE55, 2.00 #834C955A, 4.00 #83CA7831, 4.00 #841D4BD2,4.00.
1 Rotational Kinematics Rotational Motion and Angular Displacement Chapter 8 Lesson 3.
Cutnell/Johnson Physics 8 th edition Classroom Response System Questions Chapter 2 Kinematics in One Dimension Interactive Lecture Questions.
1 Rotational Kinematics Rotational Motion and Angular Displacement Chapter 8 Lesson 1 Angular displacement: When a rigid body rotates about a fixed axis,
Chapter 5:Using Newton’s Laws: Friction, Circular Motion, Drag Forces
Dynamics of Uniform Circular Motion Rotational Kinematics
Last Time: Collisions in 1- and 2-Dimensions
A solid cylinder with a radius of 4
Aim: How do we explain rotational kinematics?
Chapter 5:Using Newton’s Laws: Friction, Circular Motion, Drag Forces
Presentation transcript:

Cutnell/Johnson Physics 8th edition Classroom Response System Questions Chapter 8 Rotational Kinematics Interactive Lecture Questions

8.1.1. Over the course of a day (twenty-four hours), what is the angular displacement of the second hand of a wrist watch in radians? a) 1440 rad b) 2880 rad c) 4520 rad d) 9050 rad e) 543 000 rad

8. 2. 1. The planet Mercury takes only 88 Earth days to orbit the Sun 8.2.1. The planet Mercury takes only 88 Earth days to orbit the Sun. The orbit is nearly circular, so for this exercise, assume that it is. What is the angular velocity, in radians per second, of Mercury in its orbit around the Sun? a) 8.3 × 107 rad/s b) 2.0 × 10 5 rad/s c) 7.3 × 10 4 rad/s d) 7.1 × 10 2 rad/s e) This cannot be determined without knowing the radius of the orbit.

8.2.2. Complete the following statement: For a wheel that turns with constant angular speed, a) each point on its rim moves with constant acceleration. b) the wheel turns through “equal angles in equal times.” c) each point on the rim moves at a constant velocity. d) the angular displacement of a point on the rim is constant. e) all points on the wheel are moving at a constant velocity.

8.3.1. The propeller of an airplane is at rest when the pilot starts the engine; and its angular acceleration is a constant value. Two seconds later, the propeller is rotating at 10 rad/s. Through how many revolutions has the propeller rotated through during the first two seconds? a) 300 b) 50 c) 20 d) 10 e) 5

8.3.2. A ball is spinning about an axis that passes through its center with a constant angular acceleration of  rad/s2. During a time interval from t1 to t2, the angular displacement of the ball is  radians. At time t2, the angular velocity of the ball is 2 rad/s. What is the ball’s angular velocity at time t1? a) 6.28 rad/s b) 3.14 rad/s c) 2.22 rad/s d) 1.00 rad/s e) zero rad/s

8.4.1. The Earth, which has an equatorial radius of 6380 km, makes one revolution on its axis every 23.93 hours. What is the tangential speed of Nairobi, Kenya, a city near the equator? a) 37.0 m/s b) 74.0 m/s c) 148 m/s d) 232 m/s e) 465 m/s

8.4.2. The original Ferris wheel had a radius of 38 m and completed a full revolution (2 radians) every two minutes when operating at its maximum speed. If the wheel were uniformly slowed from its maximum speed to a stop in 35 seconds, what would be the magnitude of the instantaneous tangential speed at the outer rim of the wheel 15 seconds after it begins its deceleration? a) 0.295 m/s b) 1.12 m/s c) 1.50 m/s d) 1.77 m/s e) 2.03 m/s

8.4.3. A long, thin rod of length 4L rotates counterclockwise with constant angular acceleration around an axis that is perpendicular to the rod and passes through a pivot point that is a length L from one end as shown. What is the ratio of the tangential acceleration at a point on the end closest to the pivot point to that at a point on the end farthest from the pivot point? a) 4 b) 3 c) 1/2 d) 1/3 e) 1/4

8.4.4. A long, thin rod of length 4L rotates counterclockwise with constant angular acceleration around an axis that is perpendicular to the rod and passes through a pivot point that is a length L from one end as shown. What is the ratio of the tangential speed (at any instant) at a point on the end closest to the pivot point to that at a point on the end farthest from the pivot point? a) 1/4 b) 1/3 c) 1/2 d) 3 e) 4

8.5.1. An airplane starts from rest at the end of a runway and begins accelerating. The tires of the plane are rotating with an angular velocity that is uniformly increasing with time. On one of the tires, Point A is located on the part of the tire in contact with the runway surface and point B is located halfway between Point A and the axis of rotation. Which one of the following statements is true concerning this situation? a) Both points have the same tangential acceleration. b) Both points have the same centripetal acceleration. c) Both points have the same instantaneous angular velocity. d) The angular velocity at point A is greater than that of point B. e) Each second, point A turns through a greater angle than point B.

8.5.2. A wheel starts from rest and rotates with a constant angular acceleration. What is the ratio of the instantaneous tangential acceleration at point A located a distance 2r to that at point B located at r, where the radius of the wheel is R = 2r? a) 0.25 b) 0.50 c) 1.0 d) 2.0 e) 4.0

8. 6. 1. The wheels of a bicycle have a radius of r meters 8.6.1. The wheels of a bicycle have a radius of r meters. The bicycle is traveling along a level road at a constant speed v m/s. Which one of the following expressions may be used to determine the angular speed, in rev/min, of the wheels? a) b) c) d) e)

8.6.3. Which one of the following statements concerning a wheel undergoing rolling motion is true? a) The angular acceleration of the wheel must be zero m/s2. b) The tangential velocity is the same for all points on the wheel. c) The linear velocity for all points on the rim of the wheel is non-zero. d) The tangential velocity is the same for all points on the rim of the wheel. e) There is no slipping at the point where the wheel touches the surface on which it is rolling.

8.6.4. A circular hoop rolls without slipping on a flat horizontal surface. Which one of the following is necessarily true? a) All points on the rim of the hoop have the same speed. b) All points on the rim of the hoop have the same velocity. c) Every point on the rim of the wheel has a different velocity. d) All points on the rim of the hoop have acceleration vectors that are tangent to the hoop. e) All points on the rim of the hoop have acceleration vectors that point toward the center of the hoop.

8. 6. 5. A bicycle wheel of radius 0 8.6.5. A bicycle wheel of radius 0.70 m is turning at an angular speed of 6.3 rad/s as it rolls on a horizontal surface without slipping. What is the linear speed of the wheel? a) 1.4 m/s b) 28 m/s c) 0.11 m/s d) 4.4 m/s e) 9.1 m/s

8.7.1. A packaged roll of paper towels falls from a shelf in a grocery store and rolls due south without slipping. What is the direction of the paper towels’ angular velocity? a) north b) east c) south d) west e) down

8.7.2. A packaged roll of paper towels falls from a shelf in a grocery store and rolls due south without slipping. As its linear speed slows, what are the directions of the paper towels’ angular velocity and angular acceleration? a) east, east b) west, east c) south, north d) east, west e) west, west

8.7.3. A top is spinning counterclockwise and moving toward the right with a linear velocity as shown in the drawing. If the angular speed is decreasing as time passes, what is the direction of the angular velocity of the top? a) upward b) downward c) left d) right

8. 7. 4. A truck and trailer have 18 wheels 8.7.4. A truck and trailer have 18 wheels. If the direction of the angular velocity vectors of the 18 wheels point 30 north of east, in what direction is the truck traveling? a) 30° east of south b) 30° west of north c) 30° north of east d) 30° south of west e) 30° south of east

8.7.5. A girl is sitting on the edge of a merry-go-round at a playground as shown. Looking down from above, the merry-go-round is rotating clockwise. What is the direction of the girl’s angular velocity? a) upward b) downward c) left d) right e) There is no direction since it is the merry go round that has the angular velocity.