May 14, 2003 Curtis A. Meyer 1 Carnegie Mellon University May 14, 2003 An Experimental Overview of Gluonic Mesons.

Slides:



Advertisements
Similar presentations
Jan. 19, 2005GlueX/Exotics 2005 GlueX: Search for Gluonic Excitations at JLab Dr. David Lawrence Jefferson Lab Dr. David Lawrence Jefferson Lab.
Advertisements

Introduction Glasgow’s NPE research Group uses high precision electromagnetic probes to study the subatomic structure of matter. Alongside this we are.
Excited State Spectroscopy from Lattice QCD
An initial study of mesons and baryons containing strange quarks with GlueX 12 GeV electrons 40% lin. Pol. Uncollimated Collimated Coherent Peak GlueX.
Kernfysica: quarks, nucleonen en kernen
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
Charmonium Spectroscopy: Missing or Unconfirmed States Diego Bettoni INFN – Sezione di Ferrara International Workshop on Physics with Antiprotons at GSI.
J/  Physics at BESIII/BEPCII Xiaoyan SHEN Institute of High Energy Physics, CAS BESIII/CLEO-c Workshop, Jan , 2004, Beijing.
Exotic and excited-state meson spectroscopy and radiative transitions from lattice QCD Christopher Thomas, Jefferson Lab In collaboration with: Jo Dudek,
The Hunt for the Hybrid Meson Experimental Nuclear Physics Research at Jefferson Lab Richard Jones University of Connecticut Frontiers in Physics Colloquium.
The Physics of GlueX Curtis A. Meyer Carnegie Mellon University.
Projected Non-perturbative QCD Studies with CLEO-c QCD is felt to be the theory of strong interaction, BUT… spectroscopy incomplete Exotica predicted,
Polish-German Meeting, Warszawa, Search for exotic hadrons with the PANDA detector Jan Kisiel Institute of Physics, University of Silesia Katowice,
Department of Physics and Astronomy
The Hunt for the Hybrid Meson Exploring the dynamics of quark confinement Richard Jones University of Connecticut Physics and Astronomy Colloquium Series.
Hadron Physics with polarized photons at 9 GeV with GlueX Richard Jones University of Connecticut UConn Physics Graduate Studies Open House, Mar. 19, 2010.
September 29, 2009 Saint Vincent College 1 Confinement Curtis A. Meyer Carnegie Mellon University Gluonic Hadrons: A Probe of.
The Jefferson Lab Hall D Project Curtis A. Meyer Carnegie Mellon University SLAC Seminar, 10 January, 2002 The Search for QCD Exotics and.
Introduction Alex R. Dzierba Indiana University Spokesman Hall D Collaboration Searching for Gluonic Excitations and the JLab 12 GeV Upgrade The Hall D.
The GlueX Experiment in Hall-D
Experiment HUGS 2011 – Jefferson Laboratory Hussein Al Ghoul Department Of Physics Florida State University ᵠ.
1. Science of Confinement The spectroscopy of light mesons led to the quark model and QCD: mesons are quark-antiquark color singlet bound states held.
GlueX/Hall-D Physics Curtis A. Meyer Carnegie Mellon University JLab Users Group Meeting, June 7,2010.
QCD Exotics at BNL and JLab Curtis A. Meyer Carnegie Mellon University.
Spectroscopy: Experimental Status and Prospects Curtis A. Meyer Carnegie Mellon University.
Amplitude Analysis in GlueX Curtis A. Meyer Carnegie Mellon University.
Elton S. Smith MESON2012 May 31 – June 5, GlueX: Photoproduction of Hybrid Mesons Elton S. Smith, Jefferson Lab for the GlueX Collaboration 12th.
Meson spectroscopy with photo- and electro-production Curtis A. Meyer Carnegie Mellon University.
Mesons and Glueballs September 23, 2009 By Hanna Renkema.
Hybrid Mesons and Spectroscopy Curtis A. Meyer Carnegie Mellon University Based on C.A. Meyer and Y. Van Haarlem, Phys. Rev. C82, (2010). Expectations.
3/6/2008PHP March Photon-hadron physics with the GlueX detector at Jefferson Lab Curtis A. Meyer, Spokesperson GlueX CH L-2.
Overview of Meson Spectroscopy Experiments and Data Curtis A. Meyer Carnegie Mellon University.
Hadron Spectroscopy from Lattice QCD
Graphic from poster by Sarah Lamb, UConn Honors Program event Frontiers in Undergraduate Research, April 2009 Collimator subtends
First Results of Curtis A. Meyer GlueX Spokesperson.
M. Barbi Exclusive Vector Meson Production and Inclusive K 0 S K 0 S Final State in DIS at HERA Outline: ¥ Exclusive vector meson production ¥ Summary.
Intro. House Senate Science of Confinement The spectroscopy of light mesons led to the quark model and QCD: mesons are quark-antiquark color singlet.
Robert Edwards Jefferson Lab Creutz-Fest 2014 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAAAAAAA 1983 HADRONS.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
g/ JLab Users Group Meeting Curtis A. Meyer Poster.
October 2006GHP The GlueX Experiment Curtis A. Meyer CH L-2.
Hybrid Mesons and Spectroscopy Curtis A. Meyer Carnegie Mellon University Based on C.A. Meyer and Y. Van Haarlem, Phys. Rev. C82, (2010). Overview.
Overview - Alex Dzierba Hall D Calorimeter Review 1 Hall D/GlueX Calorimeter Review Overview and Physics Motivation Alex R. Dzierba Indiana U and Jefferson.
Forefront Issues in Meson Spectroscopy
CEBAF - Continuous Electron Beam Accelerator Facility.
1. Science of Confinement The spectroscopy of light mesons led to the quark model and QCD: mesons are quark-antiquark color singlet bound states held.
Yu. Guz (IHEP Protvino) Light exotic mesons in hadronic collisions.
Light Hadron Spectroscopy at BESIII Haolai TIAN (On behalf of the BESIII Collaboration) Institute of High Energy Physics, Beijing 23rd Rencontre de Blois.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
July 10, 2006TAPS 2006 Experimental Hall-D and the GlueX Experiment at Jefferson Lab Dr. David Lawrence Jefferson Lab Dr. David Lawrence Jefferson Lab.
Exotic and non-Exotic Charmonium Spectroscopy with FAIR Klaus Peters on behalf of the PANDA Collaboration GSI and U Frankfurt TU Munich, Oct 11,
QCHS 2010 Lei Zhang1 Lei Zhang (on behalf of BESIII Collaboration) Physics School of Nanjing University Recent.
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
Exotics & Glueballs QCD suggests the existence of non states like:  Glueballs ( gg,ggg ): mesons made of bound gluons.  Hybrids ( ): qqbar pairs with.
WA102 and Meson Spectroscopy It may be relevant to the PD … a short reminder. … a short reminder. Ted Barnes Physics Div. ORNL Dept. of Physics, U.Tenn.
May 31, 2006 CIPANP Glueballs, Hybrids & Exotics Curtis A. Meyer Carnegie Mellon University May 31, 2006 An Experimental & Phenomenological Overview.
1. Science of Confinement The spectroscopy of light mesons led to the quark model and QCD: mesons are quark-antiquark color singlet bound states held.
D. Bettoni - The Panda experiment 1 Charmonium Spectroscopy The charmonium system has often been called the positronium of QCD. Non relativistic potential.
into a quark-antiquark pair self-coupling of gluons
Exotics as a Probe of Confinement
Gluonic Hadrons: A Probe of Confinement
Curtis A. Meyer Carnegie Mellon University
Recent results on light hadron spectroscopy at BES
The GlueX Experiment Curtis A. Meyer CH L-2 11/28/2018 CIPANP 2006.
The Hadron Spectrum and QCD
Excited State Spectroscopy from Lattice QCD
Gluonic Excitations of
CMU Undergraduate Colloquium
Interpretation of the observed hybrid candidates by the QGC Model
Mixing of scalar meson and glueball
Presentation transcript:

May 14, 2003 Curtis A. Meyer 1 Carnegie Mellon University May 14, 2003 An Experimental Overview of Gluonic Mesons

May 14, 2003 Curtis A. Meyer 2 Talk Outline What are gluonic excitations ? Hybrids and Glueballs Overview of evidence for exotic quantum number states. Non-exotic quantum number states. Overview of Glueballs.

May 14, 2003 Curtis A. Meyer 3 quark-antiquark pairs u d s u d s J=L+S P=(-1) L+1 C=(-1) L+S G=C (-1) I (2S+1) L J 1 S 0 = S 1 = 1 -- ,K*  ’,K L= a 2,f 2,f’ 2,K 2 a 1,f 1,f’ 1,K 1 a 0,f 0,f’ 0,K 0 b 1,h 1,h’ 1,K 1 L=  3,  3,  3,K 3  2,  2,  2,K 2  1,  1,  1,K 1  2,  2,  ’ 2,K 2 L= radial orbital Non-quark-antiquark … Normal Mesons

May 14, 2003 Curtis A. Meyer qq Mesons L = Each box corresponds to 4 nonets (2 for L=0) Radial excitations (L = qq angular momentum) exotic nonets 0 – – – 1 – + 1 – – 2 – – – + 2 – Glueballs Hybrids Lattice GeV Spectrum GeV

May 14, 2003 Curtis A. Meyer 5 Lattice QCD From G. Bali Flux Tubes Realized Confinement arises from flux tubes and their excitation leads to a new spectrum of mesons Color Field: Because of self interaction, confining flux tubes form between static color charges

May 14, 2003 Curtis A. Meyer 6 m=0 CP=(-1) S+1 m=1 CP=(-1) S Flux-tube Model ground-state flux-tube m=0 excited flux-tube m=1 built on quark-model mesons CP={(-1) L+S }{(-1) L+1 } ={(-1) S+1 } S=0,L=0,m=1 J=1 CP=+ J PC =1 ++,1 -- (not exotic) S=1,L=0,m=1 J=1 CP=- J PC =0 -+, , ,2 +- exotic normal mesons Hybrid Mesons 1 -+ or 1 +-

May 14, 2003 Curtis A. Meyer 7 Hybrid Predictions Flux-tube model: 8 degenerate nonets 1 ++, ,0 +-,1 -+,1 +-,2 -+,2 +- ~1.9 GeV/c 2 Lattice calculations nonet is the lightest UKQCD (97) 1.87  0.20 MILC (97) 1.97  0.30 MILC (99) 2.11  0.10 Lacock(99) 1.90  0.20 Mei(02) 2.01  0.10 ~2.0 GeV/c 2 In the charmonium sector:   0.11 Splitting = Splitting  0.20 S=0 S=1  0.50

May 14, 2003 Curtis A. Meyer 8 Decays of Hybrids The angular momentum in the flux tube stays in one of the daughter mesons (L=1) and (L=0) meson.  1   b 1,  f 1, ,  a 1 1:.25:.25:.20  1  (1300) , a 1   b 2  a 1 , h 1 ,  a 2  h 2  b 1 ,  b 0   (1300) , h 1  h 0  b 1 , h 1  L flux Exotic Quantum Number Hybrids Mass and model dependent predictions

May 14, 2003 Curtis A. Meyer 9 What role do gluons play in the meson spectrum? Lattice calculations predict a spectrum of glueballs. The lightest 3 have J PC Quantum numbers of 0 ++, 2 ++ and The lightest is about 1.6 GeV/c 2 Morningstar et al. f 0 (980) f 0 (1500) f 0 (1370) f 0 (1710) a 0 (980) a 0 (1450) K* 0 (1430) Glueball Mass Spectrum

May 14, 2003 Curtis A. Meyer 10 Glue-rich channels G M M Proton-Antiproton Annihilation Central Production (double-pomeron exchange) Radiative J/  Decays 0 -+  (1440) 0 ++ f 0 (1710) Large signals Glueballs should decay in a flavor-blind fashion f 0 (1370),f 0 (1500) 0 ++ f 0 (1370),f 0 (1500), f 0 (1710)

May 14, 2003 Curtis A. Meyer 11   p    p (18 GeV) The a 2 (1320) is the dominant signal. There is a small (few %) exotic wave. Interference effects show a resonant structure in  . (Assumption of flat background phase as shown as 3.)    Mass = MeV/c 2 Width= MeV/c 2 a2a2  E852 Results Exotic Quantum Numbers 1 -+ in 

May 14, 2003 Curtis A. Meyer 12   (1400) Mass = MeV/c 2 Width= MeV/c 2 Same strength as the a 2. Produced from states with one unit of angular momentum. Without  1  2 /ndf = 3, with = 1.29     Crystal Barrel Exotic Quantum Numbers 1 -+ in 

May 14, 2003 Curtis A. Meyer 13 Significance of signal.

May 14, 2003 Curtis A. Meyer 14 At 18 GeV/c suggeststo partial wave analysis E852 Results Exotic Quantum Numbers 1 -+ in 

May 14, 2003 Curtis A. Meyer 15 Leakage From Non-exotic Wave due to imperfectly understood acceptance Exotic Signal Correlation of Phase & Intensity  1 (1600) 3  m=  = Exotic Quantum Numbers 1 -+ in  E852 Results

May 14, 2003 Curtis A. Meyer 16 E852 Results  - p   ’  - p at 18 GeV/c The  1 (1600) is the Dominant signal in  ’ . Mass =  GeV Width =  GeV  1 (1600)   ’  Other reports here:  1 (1600)  b 1   1 (1600)  f 1  , b 1 , f 1 ,  ’  Exotic Quantum Numbers 1 -+ in  ’ 

May 14, 2003 Curtis A. Meyer 17 VES Results  1 (1600) observed in  A reactions m=1.6  0.02 GeV/c 2  =0.29  0.03 GeV/c 2 b 1  :  ’  :  = 1 : 1.0  0.3 : 1.6  0.4  - A  (A) (at 37 GeV/c) b 1  (1 -+ ) Phase wrt 2 + Exotic Quantum Numbers 1 -+ in , b 1  and  ’ 

May 14, 2003 Curtis A. Meyer 18 Exotic Signals  1 (1400) Width ~ 0.3 GeV, Decays: only  weak signal in  p production (scattering??) strong signal in antiproton-deuterium.  1 (1600) Width ~ 0.16 to 0.3 GeV, Decays ,  ’ ,(b 1  ) Only seen in  p production, (E852 + VES)  1 I G (J PC )=1 - (1 -+ )  ’ 1 I G (J PC )=0 + (1 -+ )  1 I G (J PC )=0 + (1 -+ ) K 1 I G (J PC )= ½ (1 - ) In a nonet, there should only be one  1 state. Both of these are lighter than expectations, and The  [  ’]  decay modes are not what are expected.

May 14, 2003 Curtis A. Meyer 19 Hybrid Mesons with normal QN’s Assume that  1 (1600) sets the mass scale S=0 : 1 ++,1 -- S=1 : 0 -+,1 +-,2 -+ Non-exotic hybrid QN’s ,K*  ’,K L= a 2,f 2,f’ 2,K 2 a 1,f 1,f’ 1,K 1 a 0,f 0,f’ 0,K 0 b 1,h 1,h’ 1,K 1 L=  3,  3,  3,K 3  2,  2,  2,K 2  1,  1,  1,K 1  2,  2,  ’ 2,K 2 L=

May 14, 2003 Curtis A. Meyer 20 Hybrid Mesons with normal QN’s Assume that  1 (1600) sets the mass scale S=0 : 1 ++,1 -- S=1 : 0 -+,1 +-,2 -+ Non-exotic hybrid QN’s ,K*  ’,K L= a 2,f 2,f’ 2,K 2 a 1,f 1,f’ 1,K 1 a 0,f 0,f’ 0,K 0 b 1,h 1,h’ 1,K 1 L=  3,  3,  3,K 3  2,  2,  2,K 2  1,  1,  1,K 1  2,  2,  ’ 2,K 2 L= a 1,f 1,f’ 1,K 1 1 st radial excitation

May 14, 2003 Curtis A. Meyer 21 Hybrid Mesons with normal QN’s Assume that  1 (1600) sets the mass scale S=0 : 1 ++,1 -- S=1 : 0 -+,1 +-,2 -+ Non-exotic hybrid QN’s ,K*  ’,K L= a 2,f 2,f’ 2,K 2 a 1,f 1,f’ 1,K 1 a 0,f 0,f’ 0,K 0 b 1,h 1,h’ 1,K 1 L=  3,  3,  3,K 3  2,  2,  2,K 2  1,  1,  1,K 1  2,  2,  ’ 2,K 2 L= ,K* 1 st /2 nd radial excitation L=2 orbital excitation

May 14, 2003 Curtis A. Meyer 22 Hybrid Mesons with normal QN’s Assume that  1 (1600) sets the mass scale S=0 : 1 ++,1 -- S=1 : 0 -+,1 +-,2 -+ Non-exotic hybrid QN’s ,K*  ’,K L= a 2,f 2,f’ 2,K 2 a 1,f 1,f’ 1,K 1 a 0,f 0,f’ 0,K 0 b 1,h 1,h’ 1,K 1 L=  3,  3,  3,K 3  2,  2,  2,K 2  1,  1,  1,K 1  2,  2,  ’ 2,K 2 L=  ’,K 2 nd radial excitation

May 14, 2003 Curtis A. Meyer 23 Hybrid Mesons with normal QN’s Assume that  1 (1600) sets the mass scale S=0 : 1 ++,1 -- S=1 : 0 -+,1 +-,2 -+ Non-exotic hybrid QN’s ,K*  ’,K L= a 2,f 2,f’ 2,K 2 a 1,f 1,f’ 1,K 1 a 0,f 0,f’ 0,K 0 b 1,h 1,h’ 1,K 1 L=  3,  3,  3,K 3  2,  2,  2,K 2  1,  1,  1,K 1  2,  2,  ’ 2,K 2 L= b 1,h 1,h’ 1,K 1 1 st radial excitation

May 14, 2003 Curtis A. Meyer 24 Hybrid Mesons with normal QN’s Assume that  1 (1600) sets the mass scale S=0 : 1 ++,1 -- S=1 : 0 -+,1 +-,2 -+ Non-exotic hybrid QN’s ,K*  ’,K L= a 2,f 2,f’ 2,K 2 a 1,f 1,f’ 1,K 1 a 0,f 0,f’ 0,K 0 b 1,h 1,h’ 1,K 1 L=  3,  3,  3,K 3  2,  2,  2,K 2  1,  1,  1,K 1  2,  2,  ’ 2,K 2 L= L=2 orbital excitation plus radial  2,  2,  ’ 2,K 2

May 14, 2003 Curtis A. Meyer 25 Hybrid Mesons with normal QN’s Assume that  1 (1600) sets the mass scale S=0 : 1 ++,1 -- S=1 : 0 -+,1 +-,2 -+ Non-exotic hybrid QN’s ,K*  ’,K L= a 2,f 2,f’ 2,K 2 a 1,f 1,f’ 1,K 1 a 0,f 0,f’ 0,K 0 b 1,h 1,h’ 1,K 1 L=  3,  3,  3,K 3  2,  2,  2,K 2  1,  1,  1,K 1  2,  2,  ’ 2,K 2 L= b 1,h 1,h’ 1,K 1 a 1,f 1,f’ 1,K 1 ,K*  ’,K  2,  2,  ’ 2,K 2

May 14, 2003 Curtis A. Meyer 26 The 1 ++ Mesons 1 ++ : 1 st Radial Excitation of a 1 (1260)/f 1 (1285) a 1 (1640) m=1.64  0.05 GeV/c 2  =0.30  0.1 GeV/c 2 Decays to 3  via f 2  and (  ) S  Consistent with a normal meson

May 14, 2003 Curtis A. Meyer 27 The 1 -- Mesons 1 -- : 1 st Radial Excitation of  / . 2 nd Radial Excitation of  / . L=2 D-wave (  1,  2,  3 )  (1450)  (1700)  (1900)  (1420)  (1650)   (1690)   (1670)   (1850)  (1680)  (2150) L=2 Scale Decay modes are significant here, but data is hard to interpret.

May 14, 2003 Curtis A. Meyer 28 The 0 -+ Mesons  (1800)  (1760) m=1.801  GeV/c 2  =0.210  GeV/c 2 m=2.230  GeV/c 2  =0.150  large GeV/c 2 Produced in J/ , decays to 4  Decays: f 0 (980) , f 0 (1370) , ,  a 0 (980)  f 0 (1500)   (2225) Produced in J/ , decays to  Speculation that this may be a hybrid Glueball quantum numbers

May 14, 2003 Curtis A. Meyer 29 The 1 +- Mesons 1 +- : 1 st Radial Excitation of the b 1 (1235)/h 1 (1170) h 1 (1595) m=1.594  0.05 GeV/c 2  =0.384  0.15 GeV/c 2 Produced in  p interactions Decays to  Consistent with a normal meson ?

May 14, 2003 Curtis A. Meyer 30 The 2 -+ Mesons  2 (1670)  2 (1870)  2 (1645) m=1.842  GeV/c 2  =0.225  GeV/c 2 m=1.617  GeV/c 2  =0.181  GeV/c 2 m=1.67  0.02 GeV/c 2  =0.259  GeV/c 2 Decays: a 2 , f 2 , a o  a 2  is largest) Decays: a 2 , KK , a o  a 2  is largest) Decays: f 2 , , (  ) S  f o (1370)  KK   f 2  is 56%)  2 (2100) Decays: f 2 , , (  ) S  m=2.090  GeV/c 2  =0.625  GeV/c 2 Hybrid Candidate?

May 14, 2003 Curtis A. Meyer 31 Exotics and QCD In order to establish the existence of gluonic excitations, We need to establish the nonet nature of the 1 -+ state. We need to establish at other exotic QN nonets – the 0 +- and In the scalar glueball sector, the decay patterns have provided the most sensitive information. I expect the same will be true in the hybrid sector as well. DECAY PATTERS ARE CRUCIAL

May 14, 2003 Curtis A. Meyer 32 Crystal Barrel f 0 (1500) f 2 (1270) f 0 (980) f 2 (1565)+  700,000  0  0  0 Events f 0 (1500) 250,000  0 Events Discovery of the f 0 (1500) f 0 (1500)   ’, KK, 4  f 0 (1370)   s Establishes the scalar nonet Solidified the f 0 (1370) Discovery of the a 0 (1450) Results on Scalars

May 14, 2003 Curtis A. Meyer 33 The f 0 (1500) Is it possible to describe the f 0 (1500) as a member of a meson nonet? Use SU(3) and OZI suppression to compute relative decays to pairs of pseudoscalar mesons Get an angle of about 143 o 90% light-quark 10% strange-quark Both the f 0 (1370) and f 0 (1500) are

May 14, 2003 Curtis A. Meyer 34 WA102 Results Central Production Experiment Recent comprehensive data set and a coupled channel analysis. CERN experiment colliding p on a hydrogen target.

May 14, 2003 Curtis A. Meyer 35 Meson Glueball Mixing Physical Masses f 0 (1370),f 0 (1500),f 0 (1710) Bare Masses: m 1,m 2,m G (G) (S) (N) f 0 (1370)    0.07 f 0 (1500)   0.04 –0.70  0.07 f 0 (1710) 0.39    0.02 m 1 =1377  20 m 2 =1674  10 m G =1443  24 octet piece Lattice of about 1600

May 14, 2003 Curtis A. Meyer 36 Glueball Expectations Antiproton-proton: Couples to Observe: f 0 (1370),f 0 (1500) Central Production: Couples to G and in phase. Observe: f 0 (1370),f 0 (1500), weaker f 0 (1710). Radiative J/  : Couples to G, |1>, suppressed |8> Observe strong f 0 (1710) from constructive |1>+G Observe f 0 (1500) from G Observe weak f 0 (1370) from destructive |1>+G Two photon: Couples to the quark content of states, not to the glueball. Not clear to me that has been seen.

May 14, 2003 Curtis A. Meyer 37 Higher mass glueballs? Part of the CLEO-c program will be to search for glueballs in radiative J/  decays. Lattice predicts that the 2 ++ and the 0 -+ are the next two, with masses just above 2GeV/c 2. Radial Excitations of the 2 ++ ground state L= States + Radial excitations f2(1950), f2(2010), f2(2300), f2(2340)… 2’nd Radial Excitations of the  and  ’, perhaps a bit cleaner environment! (I would Not count on it though….) I expect this to be very challenging.

May 14, 2003 Curtis A. Meyer 38 The Future CLEO-c will reopen the J/  studies with 100 times Existing statistics. One goal is to find and study the Pseudoscalar (0 -+ ) and tensor glueball (2 ++ ) The GlueX experiment will be able to do for hybrids what Crystal Barrel and WA102 (together) did for glueballs. What are the properties of static glue in hadrons and how is this connected to confinement. The antiproton facility at GSI (HESR) will look for hybrids in the charmonium system. (Just approved by the German government.) The CLAS experiment at Jefferson Lab is opening a small window to meson spectroscopy in photoproduction.

May 14, 2003 Curtis A. Meyer 39

May 14, 2003 Curtis A. Meyer 40

May 14, 2003 Curtis A. Meyer 41 linear potential ground-state flux-tube m=0 excited flux-tube m=1 Gluonic Excitations provide an experimental measurement of the excited QCD potential. Observations of exotic quantum number nonets are the best experimental signal of gluonic excitations. QCD Potential

May 14, 2003 Curtis A. Meyer 42 Strong QCD See and systems. white Color singlet objects observed in nature: Allowed systems:,, Focus on “light-quark mesons” Quarks in 3 colors 8 Gluons carry color & anticolor Glueballs Hybrids 4-quark

May 14, 2003 Curtis A. Meyer 43 Nonet Mixing The I=0 members of a nonet can mix: SU(3) physical states Ideal Mixing:

May 14, 2003 Curtis A. Meyer 44 Model for Mixing meson Glueball meson Glueball meson 1 r2r2 r3r3 flavor blind? r Solve for mixing scheme F.Close: hep-ph/

May 14, 2003 Curtis A. Meyer   Central Production WA102 Three States f 0 (1370) f 0 (1500) f 0 (1710) Overpopulation Strange Decay Patterns Seen in glue-rich reactions Not in glue-poor Glueball and Mesons are mixed. Scheme is model dependent. J/  Decays? Awaiting CLEO-c What about 2 ++ and 0  ? The Scalar Mesons Crystal Barrel proton-antiproton annihilation Scalar Mesons

May 14, 2003 Curtis A. Meyer 46 Decays of Glueballs? Glueballs should decay in a flavor-blind fashion.  ’=0 is true for any SU(3) singlet and for any pseudoscalar mixing angle. Only an SU(3) “8” can couple to  ’. Flavor-blind decays have always been cited as glueball signals.