NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.

Slides:



Advertisements
Similar presentations
EXTENDED MHD SIMULATIONS: VISION AND STATUS D. D. Schnack and the NIMROD and M3D Teams Center for Extended Magnetohydrodynamic Modeling PSACI/SciDAC.
Advertisements

Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
6th Japan Korea workshop July 2011, NIFS, Toki-city Japan Edge impurity transport study in stochastic layer of LHD and scrape-off layer of HL-2A.
First Wall Heat Loads Mike Ulrickson November 15, 2014.
Halo Current and Resistive Wall Simulations of ITER H.R. Strauss 1, Linjin Zheng 2, M. Kotschenreuther 2, W.Park 3, S. Jardin 3, J. Breslau 3, A.Pletzer.
A. Kirk, 21 st IAEA Fusion Energy Conference, Chengdu, China, October 2006 Evolution of the pedestal on MAST and the implications for ELM power loadings.
SUGGESTED DIII-D RESEARCH FOCUS ON PEDESTAL/BOUNDARY PHYSICS Bill Stacey Georgia Tech Presented at DIII-D Planning Meeting
A. Kirk, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 2004 The structure of ELMS and the distribution of transient power loads in MAST Presented.
Nonlinear Simulations of ELMs with NIMROD D.P. Brennan Massachussetts Institute of Technology Cambridge, MA S.E. Kruger Tech-X Corp, Boulder, CO A. Pankin,
Physics of fusion power Lecture 11: Diagnostics / heating.
Effect of sheared flows on neoclassical tearing modes A.Sen 1, D. Chandra 1, P. K. Kaw 1 M.P. Bora 2, S. Kruger 3, J. Ramos 4 1 Institute for Plasma Research,
Progress in Configuration Development for Compact Stellarator Reactors Long-Poe Ku Princeton Plasma Physics Laboratory Aries Project Meeting, June 16-17,
Physics Analysis for Equilibrium, Stability, and Divertors ARIES Power Plant Studies Charles Kessel, PPPL DOE Peer Review, UCSD August 17, 2000.
Physics of fusion power
13th IEA/RFP Workshop – Stockholm October 9-11, D characterization of thermal core topology changes in controlled RFX-mod QSH states A. Alfier on.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Modeling of ELM Dynamics for ITER A.Y. PANKIN 1, G. BATEMAN 1, D.P. BRENNAN 2, A.H. KRITZ 1, S. KRUGER 3, P.B. SNYDER 4, and the NIMROD team 1 Lehigh University,
Massively Parallel Magnetohydrodynamics on the Cray XT3 Joshua Breslau and Jin Chen Princeton Plasma Physics Laboratory Cray XT3 Technical Workshop Nashville,
Advanced Tokamak Plasmas and the Fusion Ignition Research Experiment Charles Kessel Princeton Plasma Physics Laboratory Spring APS, Philadelphia, 4/5/2003.
SIMULATION OF A HIGH-  DISRUPTION IN DIII-D SHOT #87009 S. E. Kruger and D. D. Schnack Science Applications International Corp. San Diego, CA USA.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
Overview of MHD and extended MHD simulations of fusion plasmas Guo-Yong Fu Princeton Plasma Physics Laboratory Princeton, New Jersey, USA Workshop on ITER.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2.
Numerical Simulation on Flow Generated Resistive Wall Mode Shaoyan Cui (1,2), Xiaogang Wang (1), Yue Liu (1), Bo Yu (2) 1.State Key Laboratory of Materials.
Rotation effects in MGI rapid shutdown simulations V.A. Izzo, P.B. Parks, D. Shiraki, N. Eidietis, E. Hollmann, N. Commaux TSD Workshop 2015 Princeton,
Discussions and Summary for Session 1 ‘Transport and Confinement in Burning Plasmas’ Yukitoshi MIURA JAERI Naka IEA Large Tokamak Workshop (W60) Burning.
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
Resonant magnetic perturbation effect on the tearing mode dynamics in EXTRAP T2R: experimental results and modeling L. Frassinetti, K.E.J. Olofsson, P.R.
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
Electron behaviour in three-dimensional collisionless magnetic reconnection A. Perona 1, D. Borgogno 2, D. Grasso 2,3 1 CFSA, Department of Physics, University.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
Nonlinear interactions between micro-turbulence and macro-scale MHD A. Ishizawa, N. Nakajima, M. Okamoto, J. Ramos* National Institute for Fusion Science.
Tech-X Corporation1 Boundary Conditions In the NIMROD Code S.E. Kruger Tech-X Corporation D.D. Schnack U.W. - Madison.
Plasma-wall interactions during high density operation in LHD
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
M. Onofri, F. Malara, P. Veltri Compressible magnetohydrodynamics simulations of the RFP with anisotropic thermal conductivity Dipartimento di Fisica,
Hybrid MHD-Gyrokinetic Simulations for Fusion Reseach G. Vlad, S. Briguglio, G. Fogaccia Associazione EURATOM-ENEA, Frascati, (Rome) Italy Introduction.
Edge-SOL Plasma Transport Simulation for the KSTAR
Compact Stellarator Approach to DEMO J.F. Lyon for the US stellarator community FESAC Subcommittee Aug. 7, 2007.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Radial Electric Field Formation by Charge Exchange Reaction at Boundary of Fusion Device* K.C. Lee U.C. Davis *submitted to Physics of Plasmas.
1 A Proposal for a SWIM Slow-MHD 3D Coupled Calculation of the Sawtooth Cycle in the Presence of Energetic Particles Josh Breslau Guo-Yong Fu S. C. Jardin.
Work with TSC Yong Guo. Introduction Non-inductive current for NSTX TSC model for EAST Simulation for EAST experiment Voltage second consumption for different.
The influence of non-resonant perturbation fields: Modelling results and Proposals for TEXTOR experiments S. Günter, V. Igochine, K. Lackner, Q. Yu IPP.
NIMROD Simulations of a DIII-D Plasma Disruption
MCZ Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2,
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Magnetic Reconnection in Plasmas; a Celestial Phenomenon in the Laboratory J Egedal, W Fox, N Katz, A Le, M Porkolab, MIT, PSFC, Cambridge, MA.
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
Numerical Study on Ideal MHD Stability and RWM in Tokamaks Speaker: Yue Liu Dalian University of Technology, China Co-Authors: Li Li, Xinyang Xu, Chao.
18th International Spherical Torus Workshop, Princeton, November 2015 Magnetic Configurations  Three comparative configurations:  Standard Divertor (+QF)
DIII-D RMP simulations: enhanced density transport and rotation screening V.A. Izzo, I. Joseph NIMROD meeting:
53rd Annual Meeting of the Division of Plasma Physics, November , 2011, Salt Lake City, Utah When the total flow will move approximately along the.
Effect of Energetic-Ion/Bulk-Plasma- driven MHD Instabilities on Energetic Ion Loss in the Large Helical Device Kunihiro OGAWA, Mitsutaka ISOBE, Kazuo.
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
Presented by Yuji NAKAMURA at US-Japan JIFT Workshop “Theory-Based Modeling and Integrated Simulation of Burning Plasmas” and 21COE Workshop “Plasma Theory”
Resistive Modes in CDX-U J. Breslau, W. Park. S. Jardin, R. Kaita – PPPL D. Schnack, S. Kruger – SAIC APS-DPP Annual Meeting Albuquerque, NM October 30,
二维电磁模型 基本方程与无量纲化 基本方程. 无量纲化 方程化为 二维时的方程 时间上利用蛙跳格式 网格划分.
DIII-D 3D edge physics capabilities: modeling, experiments and physics validation Presented by T.E. Evans 1 I. Joseph 2, R.A. Moyer 2, M.J. Schaffer 1,
Hard X-rays from Superthermal Electrons in the HSX Stellarator Preliminary Examination for Ali E. Abdou Student at the Department of Engineering Physics.
Mechanisms for losses during Edge Localised modes (ELMs)
Finite difference code for 3D edge modelling
E3D: status report and application to DIII-D
Andrew Kirk on behalf of
Influence of energetic ions on neoclassical tearing modes
Presentation transcript:

NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT

DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999)

Free-Boundary Simulations Models “Halo” Plasma as Cold, Low Density Plasma Typical DIII-D Parameters: T core ~10 keV T sep ~1-10 eV n core ~5x10 19 m -3 n sep ~ m -3 Spitzer resistivity:  ~T -3/2 –Suppresses currents on open field lines –Large gradients 3 dimensionally Requires accurate calculation of anisotropic thermal conduction to distinguish between open and closed field lines

Goal of Simulation is to Model Power Distribution On Limiter during Disruption Plasma-wall interactions are complex and beyond the scope of this simulation Boundary conditions are applied at the vacuum vessel, NOT the limiter. –Vacuum vessel is conductor –Limiter is an insulator This is accurate for magnetic field: –B n =constant at conducting wall –B n can evolve at graphite limiter No boundary conditions are applied at limiter for velocity or temperatures. –This allows fluxes of mass and heat through limiter –Normal heat flux is computed at limiter boundary

Free-Boundary Simulations Based on EFIT Reconstruction Pressure raised 8.7% above best fit EFIT Above ideal MHD marginal stability limit Simulation includes: –n = 0, 1, 2 –Anisotropic heat conduction (with no T dependence)  par  perp   Ideal modes grow with finite resistivity (S = 10 5 )

First Macroscopic Feature is 2/1 Helical Temperature Perturbation Due to Magnetic Island Island result of 1/1 and 3/1 ideal perturbation causing forced reconnection

Magnetic Field Rapidly Goes Stochastic with Field Lines Filling Large Volume of Plasma Region near divertor goes stochastic first Islands interact and cause stochasticity Rapid loss of thermal energy results. Heat flux on divertor rises

Maximum Heat Flux in Calculation Shows Poloidal And Toroidal Localization Heat localized to divertor regions and outboard midplane Toroidal localization presents engineering challenges - divertors typically designed for steady-state symmetric heat fluxes Qualitatively agrees with many observed disruptions on DIII-D

Investigate Topology At Time of Maximum Heat Flux Regions of hottest heat flux are connected topologically Single field line passes through region of large perpendicular heat flux. Rapid equilibration carries it to divertor Complete topology complicated due to differences of open field lines and closed field lines

Initial Simulations Above Ideal Marginal Stability Point Look Promising Qualitative agreement with experiment: ~200 microsecond time scale, heat lost preferentially at divertor. Plasma current increases due to rapid reconnection events changing internal inductance Wall interactions are not a dominant force in obtaining qualitative agreement for these types of disruptions.

Future Directions Direct comparison of code against experimental diagnostics Increased accuracy of MHD model –Temperature-dependent thermal diffusivities –More aggressive parameters –Resistive wall B.C. and external circuit modeling Extension of fluid models –Two-fluid modeling –Electron heat flux using integral closures –Energetic particles Simulations of different devices to understand how magnetic configuration affects the wall power loading

Conclusions NIMROD’s Advanced Computational Techniques Allows Simulations Never Before Possible Heating through  limit shows super-exponential growth, in agreement with experiment and theory in fixed boundary cases. Simulation of disruption event shows qualitative agreement with experiment. Loss of internal energy is due to rapid stochastization of the field, and not a violent shift of the plasma into the wall. Heat flux is localized poloidally and toroidally as plasma localizes the perpendicular heat flux, and the parallel heat flux transports it to the wall.