QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.

Slides:



Advertisements
Similar presentations
Quantum optical effects with pulsed lasers
Advertisements

Parametric Down-conversion and other single photons sources December 2009 Assaf Halevy Course # 77740, Dr. Hagai Eisenberg 1.
Collinear interaction of photons with orbital angular momentum Apurv Chaitanya N Photonics science Laboratory, PRL.
Experimental work on entangled photon holes T.B. Pittman, S.M. Hendrickson, J. Liang, and J.D. Franson UMBC ICSSUR Olomouc, June 2009.
Quantum Coherent Control with Non-classical Light Department of Physics of Complex Systems The Weizmann Institute of Science Rehovot, Israel Yaron Bromberg,
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,
Entanglement and Bell’s Inequalities
Generation of short pulses
Displaced-photon counting for coherent optical communication Shuro Izumi.
TWO-PHOTON ABSORPTION IN SEMICONDUCTORS Fabien BOITIER, Antoine GODARD, Emmanuel ROSENCHER Claude FABRE ONERA Palaiseau Laboratoire Kastler Brossel Paris.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Quantum Entanglement and Bell’s Inequalities Kristin M. Beck and Jacob E. Mainzer Demonstrating quantum entanglement of photons via the violation of Bell’s.
Narrow transitions induced by broad band pulses  |g> |f> Loss of spectral resolution.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Analysis of quantum entanglement of spontaneous single photons
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
OPT OPT 253 Quantum Optics Laboratory, Final Presentation Wednesday, December 10 th 2008 By Carlin Gettliffe.
Shashi Prabhakar, S. Gangi Reddy, A. Aadhi, Ashok Kumar, Chithrabhanu P., G. K. Samanta and R. P. Singh Physical Research Laboratory, Ahmedabad
Experimental Quantum Teleportation Quantum systems for Information Technology Kambiz Behfar Phani Kumar.
Study and characterisation of polarisation entanglement JABIR M V Photonic sciences laboratory, PRL.
Demonstration of Sub- Rayleigh Lithography Using a Multi-Photon Absorber Heedeuk Shin, Hye Jeong Chang*, Malcolm N. O'Sullivan-Hale, Sean Bentley #, and.
Quantum Superposition, Quantum Entanglement and Quantum Technologies
Arbitrary nonparaxial accelerating beams and applications to femtosecond laser micromachining F. Courvoisier, A. Mathis, L. Froehly, M. Jacquot, R. Giust,
Experiments With Entangled Photons Paulo Henrique Souto Ribeiro Instituto de Física - UFRJ Summer School of Optics Concépcion January/2010.
Witnesses for quantum information resources Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata, India Collaborators: S. Adhikari,
GAP Optique Geneva University 1 Quantum Communications at telecom wavelengths Nicolas Gisin Hugo Zbinden Toni Acin, Claudio Bareiro, Sylvain Fasel, J.-D.
Feynman Festival, Olomouc, June 2009 Antonio Acín N. Brunner, N. Gisin, Ll. Masanes, S. Massar, M. Navascués, S. Pironio, V. Scarani Quantum correlations.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography (III)
Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
1 Characterizing Photonic Spatial States Sebastião Pádua Physics Department - Federal University of Minas Gerais – Belo Horizonte - Brazil Paraty 2009,
Pure-state, single-photon wave-packet generation by parametric down conversion in a distributed microcavity M. G. Raymer, Jaewoo Noh* Oregon Center for.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
Steering witnesses and criteria for the (non-)existence of local hidden state (LHS) models Eric Cavalcanti, Steve Jones, Howard Wiseman Centre for Quantum.
QCCC07, Aschau, October 2007 Miguel Navascués Stefano Pironio Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Cryptographic properties of.
GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With.
Yaakov Shaked, Roey Pomeranz and Avi Pe’er Department of Physics and BINA Center for Nano-technology, Bar-Ilan University, Ramat-Gan 52900, Israel
Shaping Pulses Before They are Born Avi Pe’er Physics Department and BINA center for nano-technology, Bar Ilan University FRISNO 11 Shai Yefet, Naaman.
Quantum Dense coding and Quantum Teleportation
Characterisation of non-classical light sources for quantum information technologies Wojciech Wasilewski Michał Karpiński Piotr Wasylczyk Czesław Radzewicz.
Bell Measurements and Teleportation. Overview Entanglement Bell states and Bell measurements Limitations on Bell measurements using linear devices Teleportation.
Black-box Tomography Valerio Scarani Centre for Quantum Technologies & Dept of Physics National University of Singapore.
Quantum Imaging with Undetected Photons
Quantum information with programmable optical devices: Quantum state reconstruction of qudits Carlos Saavedra Center for Optics and Photonics, Universidad.
Under the Influence of Spectral Entanglement: Polarization-Entanglement Swapping and Fusion Gates Travis Humble * and Warren Grice, Oak Ridge National.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Measuring the Wave-Function of Broadband Bi-Photons
LPHYS’07 – Leon – August 22 nd 2007 Alessandro Zavatta, Valentina Parigi, Myungshik Kim, and Marco Bellini Istituto Nazionale di Ottica Applicata (INOA)
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
Distillation and determination of unknown two-qubit entanglement: Construction of optimal witness operator Heung-Sun Sim Physics, KAIST ESF conference:
Quantum Imaging MURI Kick-Off Meeting Rochester, June 9-10, Entangled state and thermal light - Foundamental and applications.
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
Non-Locality Swapping and emergence of quantum correlations Nicolas Brunner Paul Skrzypczyk, Sandu Popescu University of Bristol.
1 NONLINEAR INTERFEROMETER FOR SHAPING THE SPECTRUM OF BRIGHT SQUEEZED VACUUM Maria Chekhova Max-Planck Institute for the Science of Light, Erlangen, Germany.
Quantum Non-locality: From Bell to Information Causality Alex Thompson Physics 486 March 7, 2016.
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
Multi-photon Absorption Rates for N00N States William Plick, Christoph F. Wildfeuer, Jonathan P. Dowling: Hearne Institute for Theoretical Physics, LSU.
Spontaneous Parametric Down Conversion and The Biphoton
Secret keys and random numbers from quantum non locality Serge Massar.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Characterization and manipulation of frequency entangled qudits 1 Bänz Bessire Quantum Optics Lab – The Stefanov.
Jiří Minář Centre for Quantum Technologies
Quantum nonlocality based on finite-speed causal influences
ENTANGLED BRIGHT SQUEEZED VACUUM
Quantum Imaging: Q-OCT Department of Electrical & Computer Engineering
Spontaneous Parametric Down Conversion
M. Stobińska1, F. Töppel2, P. Sekatski3,
Quantum Information with Continuous Variables
Frequency Bin Quantum Photonics
Experimental test of nonlocal causality
Presentation transcript:

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group Institute of Applied Physics, University of Bern, Switzerland Quantum Information and Measurement (QIM), Berlin

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Bänz Bessire2 13 Introduction The dit is a -dimensional extension of a classical 2-level system (bit) From a bit to a dit: From a qubit to a qudit: The qudit is a -dimensional extension of a quantum 2-level system (qubit) … … … … … …

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Bänz Bessire3 13 Qudit states in quantum information Fundamental tests of quantum mechanics Higher robustness to noise in Bell measurements Larger violation of Bell inequalities D. Collins et al., Phys. Rev. Lett. 88, (2013) A. Acín, T. Durt, N. Gisin, and J. I. Latorre, Phys. Rev. A 65, (2002) Quantum key distribution L. Sheridan and V. Scarani, Phys. Rev. A 82, (2010) Increase secret bit key rate Increase robustness to noise dI d (maximally entangled state) I d (non-maximally entangled state) Lower detection efficiencies required for detection loophole free Bell tests T. Vértesi, S. Pironio, and N. Brunner, Phys. Rev. Lett. 104, (2010)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Polarization entanglement (qubits) P. G. Kwiat et al., Phys. Rev. Lett. 75, 4337–4342 (1995) many more Transverse momentum entanglement (qudits) A. Mair et al., Nature 412, (2001) A. Dada et al., Nature Physics 7, (2011) M. Agnew et al., Phys. Rev. A 84, (2011) Bänz Bessire4 13 Photonic entangled qudit states Energy-time (frequency) entanglement (continuous) Discrete time bins (qudits): R. Thew et al., Phys. Rev. Lett. 93, 1–4 (2004) D. Richart et al., Appl. Phys. B 106, 543–550 (2012) Spontaneous parametric down-conversion (SPDC) (idler) (signal) (pump)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Bänz Bessire5 13 Experiment Setup Preparation (SPDC) Manipulation PPKTP Beam dump Detection (SFG) SPCM 5 W pump laser 1064 nm 1 µW 700 s -1 up-converted photons 4-prism compressor: Compensate for dispersion Align the spectrum Spatial light modulator (SLM) Jenoptik S640d 532 nm PPKTP Bandpass filter Complex transfer function: Shaping of the two-photon wavefunction by spectral amplitude and phase modulation with Detected signal after the SFG process: A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, (2005) F. Zäh, M. Halder, and T. Feurer, Optics Express 16, (2008)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Bänz Bessire6 13 Frequency-bin entangled qudits Frequency bins Discretize the SPDC spectrum to obtain entangled qudits Imply a frequency-bin structure with the SLM Independent control Subdivide the spectrum into frequency bins according to

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Bänz Bessire7 13 Quantum state tomography C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, Phys. Rev. A 88, (2013) Reconstruction of the density matrices for maximally entangled qudits by Maximum Likelihood Estimation Frequency-bin entangled qudits Detected signal is equivalent to the signal of a projective measurement with SLM

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN By means of projective measurements we determine Bänz Bessire8 13 Frequency-bin entangled qudits 2-qubit / 2-qutrit state with a variable degree of entanglement Collins et al. (CGLMP) introduced a -dimensional Bell parameter Correlations between two separated systems are explainable by a local realistic theory if (CGLMP inequality) Bell measurements D. Collins et al., Phys. Rev. Lett. 88, (2002) is varied by amplitude modulation with the SLM

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Bänz Bessire9 13 Frequency-bin entangled qudits Bell measurement Local detection method (SFG) If non-locality cannot be concluded but entanglement is demonstrated 2-qubit state with a : 2-qutrit state with a : C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, Phys. Rev. A 88, (2013) Theory scaled by mixing parameters acc. to A non-maximally entangled qutrit state ( ) violates the CGLMP inequality larger than a maximally entangled qutrit A. Acín, T. Durt, N. Gisin, and J. I. Latorre, Phys. Rev. A 65, (2002)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Bänz Bessire10 13 Time-bin entangled qudits Time bins with a SLM Analogue to frequency bins we subdivide the time domain into bins Using two time bins corresponds to the Franson concept of 2-photon interferometry SPDC J. D. Franson, PRL 62, 2205 (1989) FT

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Bänz Bessire11 13 Time-bin entangled qudits Demonstrate entangled qubits by 2-photon interference Projection of a 2-qubit state onto Finite spectral resolution at SLM plane reduces the visibility Coherence times: SLM B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, New. J. Phys., (2014)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire12 13 Outlook Implementation of other discretization schemes Discretization of the frequency space into Schmidt modes Non-locality measures Use Bell measurement data (qutrit) to calculate the non-local capacity and the distance to the non-local polytope as non-locality measures C. Bernhard, B. Bessire, A. Montina, M. Pfaffhauser, A. Stefanov, and S. Wolf, arXiv: (2014) Improvements of the experimental setup Enhance the detection efficiency by new detection schemes Improved optical resolution Allows for higher dimensions Future projects Two-photon absorption with entangled photons (coherent control) Demonstrate a Kochen-Specker experiment using entangled qutrits (or ququarts) B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, New. J. Phys., (2014)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire13 Acknowledgments Thank you for your attention! C. Bernhard S. Lerch S. Schwarz M. Unternährer A. Stefanov T. P. Wihler S. Wolf and his group Collaborators: J. Kohn