New Findings on Old-Age Mortality: Scientific and Societal Implications Leonid A. Gavrilov, Ph.D. Natalia S. Gavrilova, Ph.D. Center on Aging NORC and.

Slides:



Advertisements
Similar presentations
NORC and The University of Chicago
Advertisements

The Quest for the General Theory of Aging and Longevity Leonid A. Gavrilov Natalia S. Gavrilova Center on Aging, NORC/University of Chicago, 1155 East.
Search for Predictors of Exceptional Human Longevity: Using Computerized Genealogies and Internet Resources for Human Longevity Studies Natalia S. Gavrilova,
New approaches to study historical evolution of mortality (with implications for forecasting) Dr. Natalia S. Gavrilova, Ph.D. Dr. Leonid A. Gavrilov, Ph.D.
Mortality Measurement at Advanced Ages Dr. Natalia S. Gavrilova, Ph.D. Dr. Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The University of Chicago.
Testing Evolutionary Theories of Aging and Longevity
University of Wisconsin-Madison, CDHA seminar Biodemography of Human Longevity: New Findings and Ideas Dr. Leonid A. Gavrilov, Ph.D. Dr. Natalia S. Gavrilova,
New Findings on Human Longevity Predictors Dr. Natalia S. Gavrilova, Ph.D. Dr. Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The University of Chicago.
Biodemographic Study of Mortality Trajectories at Advanced Old Ages Natalia S. Gavrilova, Ph.D. Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The.
Gender Differences in Longevity Predictors: Effects of Early-Life and Midlife Conditions on Exceptional Longevity Leonid A. Gavrilov Natalia S. Gavrilova.
Demographic consequences of defeating aging Dr. Leonid A. Gavrilov, Ph.D. Dr. Natalia S. Gavrilova, Ph.D. Center on Aging NORC and The University of Chicago.
New approaches to study historical evolution of mortality (with implications for forecasting) Leonid A. Gavrilov, Ph.D. Natalia S. Gavrilova, Ph.D. Center.
Factors of Exceptional Longevity Dr. Natalia S. Gavrilova, Ph.D. Dr. Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The University of Chicago Chicago,
Living to 100 and Beyond: New Discoveries in Longevity Demographics Do centenarians stop aging? Refutation of 'immortal phase' theory Dr. Leonid A. Gavrilov,
Mortality Tables and Laws: Biodemographic Analysis and Reliability Theory Approach Dr. Natalia S. Gavrilova, Ph.D. Dr. Leonid A. Gavrilov, Ph.D. Center.
Human Longevity and a New Vision of Aging Natalia S. Gavrilova, Ph.D. Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The University of Chicago Chicago,
Problems of Mortality Measurement at Advanced Ages Dr. Leonid A. Gavrilov, Ph.D. Dr. Natalia S. Gavrilova, Ph.D. Center on Aging NORC and The University.
Being Born to Young Mother is Associated with Higher Chances of Living to 100 Leonid A. Gavrilov, Ph.D. Natalia S. Gavrilova, Ph.D. Center on Aging NORC.
New Estimates of Mortality Trajectories at Extreme Old Ages Dr. Natalia S. Gavrilova, Ph.D. Dr. Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The.
2006 Annual Meeting of the Gerontological Society of America, Dallas, TX New Approach to Study Determinants of Exceptional Human Longevity Dr. Leonid A.
Mortality Measurement and Modeling Beyond Age 100 Dr. Natalia S. Gavrilova, Ph.D. Dr. Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The University.
Biodemography of Old-Age Mortality in Humans and Rodents Dr. Natalia S. Gavrilova, Ph.D. Dr. Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The University.
Mortality Measurement at Advanced Ages Dr. Leonid A. Gavrilov, Ph.D. Dr. Natalia S. Gavrilova, Ph.D. Center on Aging NORC and The University of Chicago.
Mortality trajectories at very old ages: Actuarial implications Natalia S. Gavrilova, Ph.D. Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The University.
Predictors of Exceptional Longevity Dr. Leonid A. Gavrilov, Ph.D. Dr. Natalia S. Gavrilova, Ph.D. Center on Aging NORC and The University of Chicago Chicago,
Mortality Measurement Beyond Age 100 Dr. Natalia S. Gavrilova, Ph.D. Dr. Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The University of Chicago Chicago,
Biodemography of longevity: Effects of parental longevity, early-life and midlife conditions. Leonid A. Gavrilov Natalia S. Gavrilova Center on Aging NORC.
Body Size in Midlife and Exceptional Longevity: A Study of the US WWI Draft Registration Cards Dr. Leonid A. Gavrilov, Ph.D. Dr. Natalia S. Gavrilova,
New Estimates of Mortality Trajectories at Extreme Old Ages Dr. Natalia S. Gavrilova, Ph.D. Dr. Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The.
Early Life Biodemographic Influences on Exceptional Longevity: Parental Age at Person's Birth and the Month of Birth Are Important Predictors Leonid A.
Advanced Age Mortality Patterns and Longevity Predictors Natalia S. Gavrilova, Ph.D. Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The University.
U.S. Mortality at Advanced Ages: Cohort Analysis Leonid A. Gavrilov Natalia S. Gavrilova Center on Aging NORC and The University of Chicago Chicago, Illinois,
Early-Life Predictors of Exceptional Longevity in the United States: Why Centenarians are Different From Their Shorter-Lived Siblings Leonid A. Gavrilov,
2006 Chicago Actuarial Association Workshop Predictors of Exceptional Human Longevity Dr. Leonid A. Gavrilov, Ph.D. Dr. Natalia S. Gavrilova, Ph.D. Center.
Predictors of Exceptional Longevity: Effects of early-life childhood conditions, mid-life environment and parental characteristics Leonid A. Gavrilov Natalia.
New Estimates of Mortality Trajectories at Extreme Old Ages Dr. Natalia S. Gavrilova, Ph.D. Dr. Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The.
Biodemography of Mortality at Extreme Old Ages: A Study of Humans and Rodents Dr. Natalia S. Gavrilova, Ph.D. Dr. Leonid A. Gavrilov, Ph.D. Center on Aging.
Mortality Measurement at Advanced Ages: A Study of the Social Administration Death Master File Dr. Leonid A. Gavrilov, Ph.D. Dr. Natalia S. Gavrilova,
How Much Would Late-Onset Interventions in Aging Affect Demographics? Dr. Natalia S. Gavrilova, Ph.D. Dr. Leonid A. Gavrilov, Ph.D. Center on Aging NORC.
Old-Age Mortality Measurement and Modeling Dr. Natalia S. Gavrilova, Ph.D. Dr. Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The University of Chicago.
Season of birth and exceptional longevity Leonid A. Gavrilov, Ph.D. Natalia S. Gavrilova, Ph.D. Center on Aging NORC and The University of Chicago Chicago,
Mortality Trajectories at Extreme Old Ages: A Comparative Study of Different Data Sources on Old-Age Mortality Leonid A. Gavrilov, Ph.D. Natalia S. Gavrilova,
Application of systems reliability theory to the problem of aging Leonid A. Gavrilov, Ph.D. Center on Aging NORC and The University of Chicago Chicago,
NORC and The University of Chicago
NORC and The University of Chicago
Maternal Age, Fertility, and Longevity
Mortality of Supercentenarians: Does It Grow with Age?
Concepts of Time, Age and Aging Viewed by Systems Reliability Theory
Mortality Measurement at Advanced Ages
Leonid A. Gavrilov, Natalia S. Gavrilova, Vyacheslav N. Krut'ko*
Human Longevity and a New Vision of Aging
Mortality of Supercentenarians: Does It Grow with Age?
NORC and The University of Chicago
U.S. Mortality at Advanced Ages: Cohort Analysis
NORC and The University of Chicago
NORC and The University of Chicago
NORC and The University of Chicago
Mortality Patterns at Advanced Ages
Demographic Impact of Life Extension
Biodemographic Study of Mortality Trajectories at Advanced Old Ages
New Estimates of Mortality Trajectories at Extreme Old Ages
Session: Mortality Compression
Mortality Measurements and Mortality Trajectories at Advanced Ages
NORC and The University of Chicago
Natalia S. Gavrilova, Ph.D.
New Estimates of Mortality Trajectories at Extreme Old Ages
Predictors of Exceptional Human Longevity
NORC at The University of Chicago
NORC at The University of Chicago
Mortality Patterns at Advanced Ages
Presentation transcript:

New Findings on Old-Age Mortality: Scientific and Societal Implications Leonid A. Gavrilov, Ph.D. Natalia S. Gavrilova, Ph.D. Center on Aging NORC and The University of Chicago Chicago, Illinois, USA

The growing number of persons living beyond age 80 underscores the need for accurate measurement of mortality at advanced ages.

Recent projections of the U.S. Census Bureau significantly overestimated the actual number of centenarians

Views about the number of centenarians in the United States 2009

New estimates based on the 2010 census are two times lower than the U.S. Bureau of Census forecast

The same story recently happened in the Great Britain Financial Times

Earlier studies suggested that the exponential growth of mortality with age (Gompertz law) is followed by a period of deceleration, with slower rates of mortality increase.

Mortality at Advanced Ages – more than 20 years ago Source: Gavrilov L.A., Gavrilova N.S. The Biology of Life Span: A Quantitative Approach, NY: Harwood Academic Publisher, 1991

Mortality at Advanced Ages, Recent Views Source: Manton et al. (2008). Human Mortality at Extreme Ages: Data from the NLTCS and Linked Medicare Records. Math.Pop.Studies

Some evolutionary theories predict late-life mortality plateau Source: Presentation by Michael Rose

When the force of natural selection reaches a zero plateau, the mortality plateau is also expected

Study of the Social Security Administration Death Master File North American Actuarial Journal, 2011, 15(3):

Nelson-Aalen monthly estimates of hazard rates using Stata 11 Data Source: DMF full file obtained from the National Technical Information Service (NTIS). Last deaths occurred in September 2011.

Selection of competing mortality models using DMF data Data with reasonably good quality were used: non-Southern states and years age interval Gompertz and logistic (Kannisto) models were compared Nonlinear regression model for parameter estimates (Stata 11) Model goodness-of-fit was estimated using AIC and BIC

Fitting mortality with Kannisto and Gompertz models Kannisto model Gompertz model

Akaike information criterion (AIC) to compare Kannisto and Gompertz models, men, by birth cohort (non-Southern states) Conclusion: In all ten cases Gompertz model demonstrates better fit than Kannisto model for men in age interval years

Conclusions from our earlier study of Social Security Administration Death Master File Mortality deceleration at advanced ages among DMF cohorts is more expressed for data of lower quality Mortality data beyond ages years have unacceptably poor quality (as shown using female-to-male ratio test). The study by other authors also showed that beyond age 110 years the age of individuals in DMF cohorts can be validated for less than 30% cases (Young et al., 2010) Source: Gavrilov, Gavrilova, North American Actuarial Journal, 2011, 15(3):

Mortality at advanced ages is the key variable for understanding population trends among the oldest-old

The second studied dataset: U.S. cohort death rates taken from the Human Mortality Database

Selection of competing mortality models using HMD data Data with reasonably good quality were used: years age interval Gompertz and logistic (Kannisto) models were compared Nonlinear weighted regression model for parameter estimates (Stata 11) Age-specific exposure values were used as weights (Muller at al., Biometrika, 1997) Model goodness-of-fit was estimated using AIC and BIC

Fitting mortality with Kannisto and Gompertz models, HMD U.S. data

Akaike information criterion (AIC) to compare Kannisto and Gompertz models, men, by birth cohort (HMD U.S. data) Conclusion: In all ten cases Gompertz model demonstrates better fit than Kannisto model for men in age interval years

Compare DMF and HMD data Females, 1898 birth cohort Hypothesis about two-stage Gompertz model is not supported by real data

What happens beyond age 110? Mortality of supercentenarians Supercentenarians born in the United States in Source: International Longevity Database

What about other mammals? Mortality data for mice: Data from the NIH Interventions Testing Program, courtesy of Richard Miller (U of Michigan) Argonne National Laboratory data, courtesy of Bruce Carnes (U of Oklahoma)

Mortality of mice (log scale) Miller data Actuarial estimate of hazard rate with 10-day age intervals malesfemales

Bayesian information criterion (BIC) to compare the Gompertz and logistic models, mice data Dataset Miller data Controls Miller data Exp., no life extension Carnes data Early controls Carnes data Late controls Sex MFMFMFMF Cohort size at age one year Gompertz logistic Better fit (lower BIC) is highlighted in red Conclusion: In all cases Gompertz model demonstrates better fit than logistic model for mortality of mice after one year of age

Laboratory rats Data sources: Dunning, Curtis (1946); Weisner, Sheard (1935), Schlettwein-Gsell (1970)

Mortality of Wistar rats Actuarial estimate of hazard rate with 50-day age intervals Data source: Weisner, Sheard, 1935 malesfemales

Bayesian information criterion (BIC) to compare logistic and Gompertz models, rat data Line Wistar (1935)Wistar (1970)CopenhagenFisherBackcrosses Sex MFMFMFMFMF Cohort size Gompertz logistic Better fit (lower BIC) is highlighted in red Conclusion: In all cases Gompertz model demonstrates better fit than logistic model for mortality of laboratory rats

Conclusions Mortality of humans, mice and rats (and probably other mammalian species) follows the Gompertz law up to very advanced ages with no sign of deceleration These findings present a challenge to the existing theories of aging including the evolutionary theories Population number of very old individuals may be lower than it was previously expected

Acknowledgments This study was made possible thanks to: generous support from the National Institute on Aging (R01 AG028620) Stimulating working environment at the Center on Aging, NORC/University of Chicago

For More Information and Updates Please Visit Our Scientific and Educational Website on Human Longevity: And Please Post Your Comments at our Scientific Discussion Blog: