Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.

Slides:



Advertisements
Similar presentations
Relativistic Surface High Harmonic Generation
Advertisements

Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
1 Monoenergetic proton radiography of laser-plasma interactions and capsule implosions 2.7 mm 15-MeV proton backlighter (imploded D 3 He-filled capsule)
Ultrafast laser-driven electric field propagation on metallic surfaces Laser-driven proton beams When an intense short-pulse laser is focused down onto.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
SENIGALLIA-COULOMB09 1 Protons Acceleration with Laser: influence of pulse duration M. Carrié and E. Lefebvre CEA, DAM, DIF, Arpajon, France A. Flacco.
Charged-particle acceleration in PW laser-plasma interaction X. T. He Institute of Applied Physics and Computational Mathematics, Beijing Present.
1 CENTER for EDGE PLASMA SCIENCES C E PS Status of Divertor Plasma Simulator – II (DiPS-II) 2 nd PMIF Workshop Sep. 19, 2011 Julich, Germany H.-J. Woo.
Capture, focusing and energy selection of laser driven ion beams using conventional beam elements Morteza Aslaninejad Imperial College 13 December 2012.
Bunch shape monitor for Linac-4 A.V.Feschenko Institute For Nuclear Research (INR), Moscow , Russia.
Charged-particle acceleration in PW laser-plasma interaction
1 Introduction to Plasma Immersion Ion Implantation Technologies Emmanuel Wirth.
SCT-2012, Novosibirsk, June 8, 2012 SHOCK WAVE PARTICLE ACCELERATION in LASER- PLASMA INTERACTION G.I.Dudnikova, T.V.Leseykina ICT SBRAS.
U N C L A S S I F I E D LA-UR Ion driven Fast Ignition Transport, stopping and energy loss of MeV/amu ions in WDM B. Manuel Hegelich LULI July.
Collisional ionization in the beam body  Just behind the front, by continuity  →0 and the three body recombination  (T e,E) is negligible.
Diagnostics for Benchmarking Experiments L. Van Woerkom The Ohio State University University of California, San Diego Center for Energy Research 3rd MEETING.
Modeling the benchmark experiments Mingsheng Wei, Fei He, John Pasley, Farhat Beg,… University of California, San Diego Richard Stephens General Atomics.
Short pulse modelling in PPD N. J. Sircombe, M. G. Ramsay, D. A. Chapman, S. J. Hughes, D. J. Swatton.
Update on LLNL FI activities on the Titan Laser A.J.Mackinnon Feb 28, 2007 Fusion Science Center Meeting Chicago.
Acceleration of a mass limited target by ultra-high intensity laser pulse A.A.Andreev 1, J.Limpouch 2, K.Yu.Platonov 1 J.Psikal 2, Yu.Stolyarov 1 1. ILPh.
ICFT/P PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION 9 th International Fast Ignition Workshop Cambridge, MA 3 November.
Hot Electron Behaviors Relevant to Fast Ignition K. A. Tanaka 1,2, H. Habara 1,2, R. Kodama 1,2, K. Kondo 1,2, G.R. Kumar 1,2,3, A.L. Lei 1,2, K. Mima.
Assembly of Targets for RPA by Compression Waves A.P.L.Robinson Plasma Physics Group, Central Laser Facility, STFC Rutherford-Appleton Lab.
Measurement of Magnetic field in intense laser-matter interaction via Relativistic electron deflectometry Osaka University *N. Nakanii, H. Habara, K. A.
Laser acceleration of electrons and ions: principles, issues, and applications Alexander Lobko Institute for Nuclear Problems, BSU Minsk Belarus.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
ENHANCED LASER-DRIVEN PROTON ACCELERATION IN MASS-LIMITED TARGETS
ACKNOWLEDGMENTS This research was supported by the National Science Foundation of China (NSFC) under grants , , , the Specialized.
Angular distribution of fast electrons and
Dietrich Habs ELI Photonuclear Bucharest, Feb 2, D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik A Laser-Accelerated.
Presented at the 15 th International Symposium on Heavy Ion Driven Inertial Confinement Fusion in Princeton, June 7, 2004 by Matthias Geissel 1,2, Markus.
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
Highly efficient acceleration and collimation of high-density plasma Jan Badziak Institute of Plasma Physics and Laser Microfusion Warsaw, Poland.
This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under.
Ulsan National Institute of Science and Technology Toward a World-Leading University Y.K KIM.
Russian Research Center” Kurchatov Institute” Theoretical Modeling of Track Formation in Materials under Heavy Ion Irradiation Alexander Ryazanov “Basic.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Laser Treated Metallic Probes for Cancer Treatment in MRI Systems July 08, Advance Materials Processing and Analysis Center (AMPAC) Department of.
J. Hasegawa, S. Hirai, H. Kita, Y. Oguri, M. Ogawa RLNR, TIT
R. Kupfer, B. Barmashenko and I. Bar
W.Lu, M.Tzoufras, F.S.Tsung, C.Joshi, W.B.Mori
Fast Electron Temperature Scaling and Conversion Efficiency Measurements using a Bremsstrahlung Spectrometer Brad Westover US-Japan Workshop San Diego,
1 Generation of laser-driven secondary sources and applications Patrizio Antici Istituto Nazionale di Fisica Nucleare Università di Roma “Sapienza”
Rb flow in AWAKE Gennady PLYUSHCHEV (CERN - EPFL).
1. Fast ignition by hydrodynamic flow
UNR activities in FSC Y. Sentoku and T. E. Cowan $40K from FSC to support a graduate student, Brian Chrisman, “Numerical modeling of fast ignition physics”.
Warp LBNL Warp suite of simulation codes: developed to study high current ion beams (heavy-ion driven inertial confinement fusion). High.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Prospects for generating high brightness and low energy spread electron beams through self-injection schemes Xinlu Xu*, Fei Li, Peicheng Yu, Wei Lu, Warren.
Mirela Cerchez, ILPP, HHU, Düsseldorf Meeting GRK1203, Bad Breisig, 11th October 2007 Absorption of sub-10 fs laser pulses in overdense solid targets Mirela.
M. Amin 1, M. Borghesi 2, C. A. Cecchetti 2, J. Fuchs 3, M. Kalashnikov 4, P. V. Nickles 4, A. Pipahl 1, G. Priebe 5, E. Risse 4, W. Sandner 4,6, M. Schnürer.
Study of transient fields with Proton Imaging Toma Toncian Bad Breisig October 2008 GRK1203 TexPoint fonts used in EMF. Read the TexPoint manual before.
International Conference on Science and Technology for FAIR in Europe 2014 APPA Cave Instrumentation for Plasma Physics Vincent Bagnoud, GSI and Helmholtz.
1 1 Office of Science Strong Field Electrodynamics of Thin Foils S. S. Bulanov Lawrence Berkeley National Laboratory, Berkeley, CA We acknowledge support.
Physical Mechanism of the Transverse Instability in the Radiation Pressure Ion Acceleration Process Yang Wan Department of Engineering Physics, Tsinghua.
23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 1 Laser acceleration.
Tomoyuki Johzaki*, *Hiroshima University Energy density (Bx2+By2)1/2
Proton-driven plasma wakefield acceleration in hollow plasma
New concept of light ion acceleration from low-density target
V. Bagnoud PHELIX, Plasma Physics department GSI Darmstadt
Experiments at LCLS wavelength: 0.62 nm (2 keV)
Studies of the energy transfer
Wakefield Accelerator
TNSA laser driven ion acceleration
L. Obst, S. Göde, M. Rehwald, F. -E. Brack, J. Branco, S. Bock, M
Ultra-Intense Lasers Based on K.W.D. Ledingham e.a., Science, 300, 1107 (2003) Roel Rozendaal.
Computed Tomography (C.T)
EX18710 (大阪大学推薦課題) 課題代表者  矢野 将寛 (大阪大学大学院 工学研究科) 研究課題名
Presentation transcript:

Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers

Munib Amin – ILPP Düsseldorf2 Introduction ●You need  Thin foil target  Short pulse  High intensity  High contrast ●You get  Up to protons  up to about 60 MeV  high laminarity beam  Small virtual source size

Munib Amin – ILPP Düsseldorf3 Overview ●Acceleration ●Beam Properties and Control ●Applications ●Conclusion

Munib Amin – ILPP Düsseldorf4 How to accelerate protons? TNSA! (Target Normal Sheath Acceleration)

Munib Amin – ILPP Düsseldorf5 How to accelerate protons (I)

Munib Amin – ILPP Düsseldorf6 How to accelerate protons (II)

Munib Amin – ILPP Düsseldorf7 Properties (I): Laminarity Virtual source ●Longitudinal laminarity ●Transversal laminarity Fast protons Slow protons Proton generation foil Borghesi et al. (2004) Cowan et al. (2004)

Munib Amin – ILPP Düsseldorf8 Properties (II): Ion species ●Heating ●Ablation Energy [MeV] Ions/MeV F7+ heated F7+ unheated Hegelich et al (2002)

Munib Amin – ILPP Düsseldorf9 Properties (III): Divergence/spectrum ●Focus ●Collimate ●Select energy Laser pulse 2 Metal foil cylinder Protons Toncian et al (2006)

Munib Amin – ILPP Düsseldorf10 Properties (IV): Energy ●Energy increase: Laser piston regime? Esirkepov et al (2004)

Munib Amin – ILPP Düsseldorf11 Applications ●Diagnostics for dense plasmas ●Isochoric heating ●Ion source for conventional particle accelerators ●Fast ignition ●Medical applications Already done Maybe one day

Munib Amin – ILPP Düsseldorf12 Probing (I): Principle Object moving downwards ●Time variation can mapped. Borghesi et al (2001)

Munib Amin – ILPP Düsseldorf13 Probing (II): Electric field Proton trajectories Displace- ment Lower density Higher density ●Measure: Density distribution/displacement of protons having the same energy ●Find out: Temporal evolution of the electric field

Munib Amin – ILPP Düsseldorf14 Probing (III): Deflectometry

Munib Amin – ILPP Düsseldorf15 Probing (IV): Deflectometry ●Identify grid nodes ●Measure their displacement

Munib Amin – ILPP Düsseldorf16 Isochoric heating: Creating WDM ●Hemispherical target 320 µm Al Al-foil Patel et al (2003)

Munib Amin – ILPP Düsseldorf17 Fast ignition Roth et al (2001) Petawatt beams (5ps 6kJ) Conical shaped target Proton beams Primary driver Fuel

Munib Amin – ILPP Düsseldorf18 Medical applications (I): Radioisotopes Ledingham et al (2004)

Munib Amin – ILPP Düsseldorf19 Medical applications (II): Cancer therapy X-raysProtons

Munib Amin – ILPP Düsseldorf20 Conclusion ●Attractive applications are waiting for laser accelerated ion beams ●…if we are able to control their properties.

Munib Amin – ILPP Düsseldorf21 Thank you

Munib Amin – ILPP Düsseldorf22 Detection – radiochromic film stack ●The density distribution of the proton beam is recorded by a stack of radiochromic films. ●Since protons deposit most of their energy in the Bragg peak, one film shows the distribution corresponding to only one specific energy. RCF stack

Munib Amin – ILPP Düsseldorf23 Overview (2) ●Quasi monoenergetic particles can be generated by  A special treatment of the foil target (thin layer or dots containing the particles to be accelerated on the rear surface)  A second target that selects one velocity class of protons: a laser irradiated hollow metal foil cylinder ●The proton beam can be focused by using  A hemispherical proton generation foil  A second target that focuses the divergent proton beam: a laser irradiated hollow metal foil cylinder B. M. Hegelich, et al., Nature, 439, (2006). H. Schwoerer, et al., Nature, 439, (2006). P. K. Patel, et al., Phys. Rev. Lett. 91, (2003). T. Toncian, et al., Science 312, (2006).

Munib Amin – ILPP Düsseldorf24 The RAL experiment – Temporal and spatial field evolution on the target surface ●A proton beam is used to probe the electric field on the surface of a laser irradiated metal foil cylinder. ●The density distribution of the electron beam is recorded by a stack of radiochromic films. Laser pulse 1 Laser pulse 2 RCF stack (detector) Metal foil cylinder Proton generation foil Proton beam

Munib Amin – ILPP Düsseldorf25 Reconstruction of the electric field – an iterative method Experiment 1: StreakingExperiment 2: Imaging Imaging Experimental result Simulation Parameter fit Streaking Experimental result Simulation Parameter fit Modelling Parameter transfer

Munib Amin – ILPP Düsseldorf26 Modelling ●Setting up a one dimensional field configuration from simulations or previously published models or experimental results ●Setting reasonable starting parameters for the analysis of the experimental results ●Generalizing to three dimensions according to the experimental geometry

Munib Amin – ILPP Düsseldorf27 The electric field configuration ●The fraction of laser energy absorbed by hot electrons and the hot electron temperature are estimated depending on laser intensity and wave length according to Fuchs[2006]. ●The electric field is supposed to build up in a plasma expanding into vacuum as described by Mora[2003]. ●Spatial dependence in one dimension and temporal evolution are given by PIC and MHD-simulations conducted by Romagnani[2005]. J. Fuchs, et al., Nature Physics 2, (2006). P. Mora, Phys. Rev. Lett. 90, (2003). L. Romagnani, et al., Phys. Rev. Lett. 95, (2005).

Munib Amin – ILPP Düsseldorf28 One dimensional electric field Field strength / (V/m) Time / s Position / m The field distribution according to Mora[2003] and Romagnani[2006] is modelled in one dimension.

Munib Amin – ILPP Düsseldorf29 Generalizing to more dimensions Front E x E x y Weaker and retarded The field distribution can be generalized to two or three dimensions by assuming the expansion to start later and the electron density to be lower at larger distances from the centre of the interaction.

Munib Amin – ILPP Düsseldorf30 The target geometry t3t3 t2t2 t1t1 x y The one dimensional field distribution is applied along the dashed lines Plain targetCurved or cylindrical target