By Assist.prof. Hussein Hadi Abbass University of Kufa\College of Education for girls\ Department of Mathematics Hasan Mohammed Ali.

Slides:



Advertisements
Similar presentations
Arrays in Flash What is an Array: What is an Array: Array is a list of cells, each cell in the list has a number to identify it (index or position). هي
Advertisements

Presented by: Ms. Maria Estrellita D. Hechanova, ECE
Chapter 6 Languages: finite state machines
Basic Properties of Relations
1.  We have studied groups, which is an algebraic structure equipped with one binary operation. Now we shall study rings which is an algebraic structure.
Review some statistical distributions and characteristics Probability density function moment generating function, cumulant generating functions.
Algebraic Structures DEFINITIONS: PROPERTIES OF BINARY OPERATIONS Let S be a set and let  denote a binary operation on S. (Here  does not necessarily.
Question-Tags الأسئلة المذيلة
تعريب لوحة المفاتيح والشاشة
عندما تتناقض الآراء When Points of View Contradict.
الظل والظلال محاضرات العام الدراسي
CSE-221 Digital Logic Design (DLD)
Preliminaries/ Chapter 1: Introduction. Definitions: from Abstract to Linear Algebra.
Mind Mapper. مقدمة تعرفنا في دروس سابقة على الخرائط الذهنية وكيفية تصميمها باستخدام برمجية الوورد ولكن اليوم سنقدم برمجية متخصصة في رسم الخرائط الذهنية.
EMSA EXTERNAL MEASUREMENT of STUDENT ACHIEVEMENT.
Fall 2002CMSC Discrete Structures1 Yes, No, Maybe... Boolean Algebra.
Relations Chapter 9.
Topological Nets and Filters Mark Hunnell. Outline 1.Motivations for Nets and Filters 2.Basic Definitions 3.Construction of Equivalence 4.Comparison and.
1 Section 10.1 What Is an Algebra? To most people the word algebra means high school algebra. But there are many kinds of algebra. An algebra consists.
Chapter 9. Chapter Summary Relations and Their Properties Representing Relations Equivalence Relations Partial Orderings.
Chapter 3 Vector Spaces. The operations of addition and scalar multiplication are used in many contexts in mathematics. Regardless of the context, however,
Chapter 9. Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations.
Discrete Math for CS Binary Relation: A binary relation between sets A and B is a subset of the Cartesian Product A x B. If A = B we say that the relation.
Relations, Functions, and Matrices Mathematical Structures for Computer Science Chapter 4 Copyright © 2006 W.H. Freeman & Co.MSCS Slides Relations, Functions.
Computably Enumerable Semigroups, Algebras, and Groups Bakhadyr Khoussainov The University of Auckland New Zealand Research is partially supported by Marsden.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Relations.
Discrete Mathematics Relation.
Relations, Functions, and Matrices Mathematical Structures for Computer Science Chapter 4 Copyright © 2006 W.H. Freeman & Co.MSCS Slides Relations, Functions.
Introduction to Real Analysis Dr. Weihu Hong Clayton State University 8/19/2008.
Discrete Mathematics Lecture # 15 Types of Relations (contd.)
The school concert. Do you like listening to music ? Why ?
Dale Roberts Department of Computer and Information Science, School of Science, IUPUI Dale Roberts, Lecturer Computer Science, IUPUI
Chapter 9. Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations.
R. Johnsonbaugh Discrete Mathematics 5 th edition, 2001 Chapter 9 Boolean Algebras and Combinatorial Circuits.
Dale Roberts Department of Computer and Information Science, School of Science, IUPUI Dale Roberts, Lecturer Computer Science, IUPUI
Chapter 13 Mathematic Structures 13.1 Modular Arithmetic Definition 1 (modulo). Let a be an integer and m be a positive integer. We denoted by a mod m.
Sets Part II.
Mathematical Physics Seminar Notes Lecture 4 Global Analysis and Lie Theory Wayne M. Lawton Department of Mathematics National University of Singapore.
CSE 461. Binary Logic Binary logic consists of binary variables and logical operations. Variables are designated by letters such as A, B, C, x, y, z etc.
Boolean Algebra.
Section 9.1. Section Summary Relations and Functions Properties of Relations Reflexive Relations Symmetric and Antisymmetric Relations Transitive Relations.
Relations Chapter 9 Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Objectives The student will be able to:
CHAPTER 3 SETS, BOOLEAN ALGEBRA & LOGIC CIRCUITS
Section 14.2 Computing Partial Derivatives Algebraically
Chapter 11 (Part 1): Boolean Algebra
Relations Chapter 9.
State Chart Diagrams.
لنفرض أن هدف التجربة هو مقارنة صنفين من السماد (A و B) من حيث كمية محصول نوع معين من القمح.
Hama University, Agriculture college Hama University, Agriculture college.
Set Theory A B C.
Section 4.1: Vector Spaces and Subspaces
تابع :تطبيع البيانات.
Section 4.1: Vector Spaces and Subspaces
سياسات واستراتيجيات البحث
Programming -2 برمجة -2 المحاضرة-1 Lecture-1.
أ.إسراء الطريقي , 306 عال , المحاضره الثالثه
3. Browsing the Web تصفح الانترنت
Prepared By : Ms Asma Prepared For : Grade 7
Chapter 10.1 and 10.2: Boolean Algebra
Boolean Algebra Introduction CSCI 240
Chapter 10.1 and 10.2: Boolean Algebra
Chapter 10.1 and 10.2: Boolean Algebra
Instructor: Alexander Stoytchev
Digital Logic Chapter-2
Chapter 10.1 and 10.2: Boolean Algebra
Rayat Shikshan Sanstha’s S.M.Joshi College, Hadapsar -28
Rayat Shikshan Sanstha’s S.M.Joshi College, Hadapsar -28
PRESENTED BY Dr.U.KARUPPIAH DEPARTMENT OF MATHEMATICS
4 أسباب وراء فشل حبك في مرحلة المراهقة. كثير من الفتيات والشابات يقعوا في الحب في مرحلة المراهقة، وهي المرحلة التي تبدأ فيها الفتاة في التعرف على الطرف.
Presentation transcript:

By Assist.prof. Hussein Hadi Abbass University of Kufa\College of Education for girls\ Department of Mathematics Hasan Mohammed Ali Saeed University of Kufa\ College of Mathematics and Computer Sciences \Department of Mathematics

Historical Introduction

1966 BCK-algebra(Bose, chaudhury, K. Iseki) BCI-algebra (K. Iseki) Ideal of BCK-algebra (K. Iseki) 1983 BCH-algebra (Q.P.Hu, X.Li) 1991 Ideal of BCI-algebra (C. S. Hoo) Ideal of a BCH-algebra (M. A. Chaudhry)

1996 Closed ideal of BCH-algebra (M. A. Chaudhry) and (H. Fakhar-ud-din) 2010 Fantastic ideal (A. B. Saeid ) 2011 closed ideal with respect to an element of a BCH- algebra (H. H. Abbass, H.M.A. Saeed) Closed BCH-algebra with respect to an element (H. H. Abbass, H.M.A. Saeed)

أن أغلب الأجهزة الرقمية في أنظمة الاتصالات تقوم بنقل المعلومات على شكل ذبذبات مرمزة بشكل ثنائي أي ان المعلومة (message)تكون بصيغة 1,0لذلك سوف يكون موضوع الندوة حول الشفرات الثنائية وهذه الشفرات يمكن الحصول عليها من عناصر حقل غالوا وعلى سبيل المثال الذبذبة في المخطط ادناه يرمز لها بالرمز 10110

ينشأ حقل غالوا بأخذ متعددة حدود غير قابلة للتحليل ( بدائية ) primitive ذات درجة n تنتمي الى حلقة متعددة الحدود فيتم انشاء حقل غالوا باستخدامها حيث أن اي ان تكون جذراً لـــ أن يحتوي على من العناصر وهو حقل توسيع للحقل ويعتبر هذا الحقل مولد لـ من الذبذبات ( الشفرات الرقمية ) مــثال : أنشئ حقل غالوا باستخدام متعددة الحدود وبماأن اذن يمكن ايجاد عناصر غالوا من خلال التعويض عن

بـ 0,1 فيكون هناك من الأحتمالات التي تمثل عناصر حـــقل غالوا من وجهة نظر الرياضيات والذي يمثل مولد لشفرات رقمية ثنائية لمصممي الأجهزة الألكترونية أي أن هو مولد رسائل رقمية ثنائية

الشكل الأتي يبين مولد شفرات رقمية shift regester الذي يمثل الحقل المولد بواسطة متعددة الحدود

خلال نقل المعلومات تكون معرضة للتشويش أي بمعنى اخر وجود اشارات دخيلة التي ممكن أن تغير المعلومات المنقولة.لذلك ظهرت الحاجة الى مايسمى الشفرات الكاشفة والمصححة للأخطاء. التشويش بعد حين التشويش

صورة مستلمة من احدى الاقمار الصناعية قبل تصحيحها

وعلى سبيل المثال تقول وكالة ناسا للفضاء الأمريكية أنها أرسلت 1969 مركبتان فضائيتان (Mariners 6,7) وأن هاتان المركبتان أرسلتا أكثر من 200 صورة لكوكب المريخ كل صورة تحتاج الى ( (5 ملايين بت وأن معدل الأرسال هو بت في الثانية ترسل الى الأرض وأنها قد استخدمت الشفرات الكاشفة والمصححة للأخطاء

الصورة التي تم عرضها سابقا(قبل التصحيح) ( بعد التصحيح ) نعرض الصورة المشوشة التي تم عرضها سابقاً وتظهر الصورة الحقيقية على اليسار

1.PRELIMINARIES Definition ( 1.1 ) [5, 6] : A BCI-algebra is an algebra (X,*,0), where X is nonempty set, * is a binary operation and o is a constant, satisfying the following axioms: for all x,y, z  X: ((x *y) * (x * z)) * (z * y) = 0, (x * (x * y)) * y = 0, x * x = 0, x * y =0 and y * x = 0 imply x = y,

Definition ( 1.2 ) [11] : A BCK-algebra is a BCI-algebra satisfying the axiom: 0 * x = 0 for all x  X. Definition ( 1.3 ) [10] : A BCH-algebra is an algebra (X,*,0), where X is nonempty set, * is a binary operation and 0 is a constant, satisfying the following axioms: for all x,y, z  X: x * x = 0, x * y =0 and y * x = 0 imply x = y, ( x * y ) * z = ( x * z ) * y

Definition ( 1.4 ) [3, 11, 12] : In any BCH/BCI/BCK-algebra X, a partial order  is defined by putting x  y if and only if x*y = 0. Proposition ( 1.5 ) [4, 8, 9] : In a BCH-algebra X, the following holds for all x, y, z  X, x * 0 = x, (x * (x * y)) * y = 0, 0 * (x * y) = (0 * x) * (0 * y), 0 * (0 * (0 * x)) = 0 * x, x  y implies 0 * x = 0 * y.

Definition ( 1.7 ) [2] : A BCH-algebra X that satisfying in condition if 0 * x = 0 then x = 0, for all x  X is called a P- semisimple BCH-algebra. Definition ( 1.8 ) [7] : A BCH-algebra X is called medial if x * ( x * y ) = y, for all x, y  X. Definition ( 1.9 ) [2] : A BCH-algebra X is called an associative BCH- algebra if: ( x * y ) * z = x * ( y * z ), for all x, y, z  X.

TYPE OF BCH-ALGEBRA BCH-ALGEBRA P- semisimple Medialassociative

Definition ( 1.10 ) [9] : Let X be a BCH-algebra. Then the set X + = { x  X : 0 * x = 0 } is called the BCA-part of X. Definition ( 1.12 ) [9] : Let X be a BCH-algebra. Then the set med(X) = {x  X : 0 * (0 * x) = x} is called the medial part of X.

PART OF BCH-ALGEBRA BCH-algebraBCA-partMedial part

Theorem ( 1.14 ) [7] : Let X be a BCH-algebra. Then x  med(X) if and only if x*y = 0*(y*x) for all x,y  X. Definition ( 1.15 ) [9] : Let S be a subset of a BCH-algebra X. S is called a subalgebra of X if x*y  S for every x,y  S.

Definition ( 1.16 ) [2, 7]: Let I be a nonempty subset of a BCH-algebra X. Then I is called an ideal of X if it satisfies: (i) 0  I (ii) x*y  I and y  I imply x  I. Definition ( 1.17) [7] : An ideal I of a BCH-algebra X is called a closed ideal of X if 0*x  I for all x  I.

Definition ( 1.18 ) [7] : An ideal I of a BCH-algebra X is called a quasi- associative ideal if 0*(0*x)=0*x, for each x  I. Definition ( 1.19 ) [1 ] : Let I be an ideal of X. Then I is called a fantastic ideal of X if (x*y)*z  I and z  I, then x*(y*(y*x))  I, for all x, y, z  X.

Definition ( 1.19 ) [1 ] : Let I be an ideal of X. Then I is called a fantastic ideal of X if (x*y)*z  I and z  I, then x*(y*(y*x))  I, for all x, y, z  X. Proposition ( 1.20 ) [1] : If X is an associative BCI-algebra, then every ideal is a fantastic ideal of X.

2.THE MAIN RESULTS Definition ( 2.1 ): Let X be a BCH-algebra and I be an ideal of X. Then I is called a closed ideal with respect to an element a  X (denoted a-closed ideal) if a * ( 0 * x )  I, for all x  I. Remark ( 2.2 ): In a BCH-algebra X, the ideal I = {0} is the closed ideal with respect to 0. Also, the ideal I = X is the closed ideal with respect to all elements of X.

Example ( 2.3 ): Let X = {0,a,b,c }. The following table shows the BCH-algebra on X. cba0* cba00 bc0aa a0cbb 0abcc

Then I={0,a} is closed ideal with respect to( 0 and a),Since 0  I, If x*y  I,and y  I implies x  I So I is ideal. 0*(0*0) = 0  I and 0*(0*a) = a  I  I is 0-closed ideal. Also a*(0*0)=a  I and a*(0*a) = 0  I  I is a-closed ideal.

Definition ( 2.4 ): Let X be a BCH-algebra and a  X. Then X is called closed BCH-algebra with respect to a, or a-closed BCH-algebra, if and only if every proper ideal is closed ideal with respect to a. Example ( 2.5 ): Let X={0, 1, 2, 3, 4, 5}. The following table shows the BCH-algebra structure on X.

543210*

I 1 ={0, 1}, I 2 ={0, 1, 2} and I 3 ={0, 1, 2, 3} are all the proper ideals [since if x*y  I i and y  I i  x  I i,  i=1, 2, 3 ]. I 1 is closed ideal with respect to 1 [since 1*(0*x)  I 1,  x  I 1 ] I 2 is closed ideal with respect to 1 [since 1*(0*x)  I 2,  x  I 2 ] I 3 is closed ideal with respect to 1 [since 1*(0*x)  I 3,  x  I 3 ] Therefore, X is 1-closed BCH-algebra. But X is not 2-closed BCH-algebra, since I1 is not 2-closed ideal[Since(2*(0*1))=2  I1

Theorem(2.6) : Let X is a BCH-algebra. If X=X + (where X+ is a BCA- part), then X is 0-closed BCH-algebra. Corollary(2.7) : Every BCK-algebra is 0-closed BCH-algebra.

BCK-algebra BCH and BCA-algebra 0-closed BCH-algebra

Theorem(2.8) : Let X be a 0-closed BCH-algebra. Then every quasi-associative ideal is closed ideal. Theorem(2.9) : Let X be a 0-closed BCH-algebra. Then every quasi- associative ideal is subalgebra.

In 0-closed BCH-algebra Quasi-associative ideal subalgebraClosed ideal

proposition(2.10) : Let X be an a-closed BCI-algebra, with a  X. If X is an associative BCI-algebra, then every a-closed ideal is a fantastic ideal of X.

شكراً لإصغائكم