1 PHYS 3313 – Section 001 Lecture #20 Monday, Apr. 7, 2014 Dr. Jaehoon Yu 3D Infinite Potential Well Degeneracy Simple Harmonic Oscillator Barriers and.

Slides:



Advertisements
Similar presentations
Wednesday, June 4, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #3 Wednesday, June 4, 2014 Dr. Jaehoon Yu Chapter 2:
Advertisements

Monday, Oct. 15, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #12 Monday, Oct. 15, 2012 Dr. Jaehoon Yu The Schrödinger.
Monday, Nov. 11, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, Nov. 11, 2013 Dr. Jaehoon Yu Alpha Particle.
Quantum Mechanics in three dimensions.
PHYS 3313 – Section 001 Lecture #17
PHYS 3313 – Section 001 Lecture #21
CHAPTER 6 Quantum Mechanics II
Monday, Nov. 5, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, Nov. 1, 2012 Dr. Jaehoon Yu Alpha Particle Decay.
Monday, Oct. 22, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Monday, Oct. 22, 2012 Dr. Jaehoon Yu Infinite Potential.
Wednesday, April 22, 2015 PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 22 Wednesday, April 22, 2015 Dr. Barry Spurlock.
Monday, Feb. 16, 2015PHYS , Spring 2014 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #8 Monday, Feb. 16, 2015 Dr. Jaehoon Yu Relativistic Energy.
Wednesday, April 8, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, April 8, 2015 Dr. Jaehoon Yu Expectation.
1 PHYS 3313 – Section 001 Lecture #22 Monday, Apr. 14, 2014 Dr. Jaehoon Yu Barriers and Tunneling Alpha Particle Decay Use of Schrodinger Equation on Hydrogen.
Wednesday, Nov. 6, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, Nov. 6, 2013 Dr. Jaehoon Yu Barriers and.
Wednesday, Oct. 30, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Wednesday, Oct. 30, 2013 Dr. Jaehoon Yu Infinite.
Wednesday, Mar. 5, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #13 Wednesday, Mar. 5, 2003 Dr. Jae Yu Local Gauge Invariance and Introduction.
Wednesday, Oct. 17, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #13 Wednesday, Oct. 17, 2012 Dr. Jaehoon Yu Properties.

Ch 4. Using Quantum Mechanics on Simple Systems
Wednesday, Nov. 13, 2013 PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, Nov. 13, 2013 Dr. Jaehoon Yu Solutions.
Physics 451 Quantum mechanics I Fall 2012 Sep 12, 2012 Karine Chesnel.
Monday, March 23, 2015PHYS , Spring 2014 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #13 Monday, March 23, 2015 Dr. Jaehoon Yu Bohr Radius.
Hydrogen Atom and QM in 3-D 1. HW 8, problem 6.32 and A review of the hydrogen atom 2. Quiz Topics in this chapter:  The hydrogen atom  The.
Schrodinger’s Equation for Three Dimensions
1 PHYS 3313 – Section 001 Lecture #23 Tuesday, Apr. 16, 2014 Dr. Jaehoon Yu Schrodinger Equation for Hydrogen Atom Quantum Numbers Solutions to the Angular.
1 PHYS 3313 – Section 001 Lecture #18 Monday, Mar. 31, 2014 Dr. Jaehoon Yu Valid Wave Functions Energy and Position Operators Infinite Square Well Potential.
Monday, April 6, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, April 6, 2015 Dr. Jaehoon Yu Normalization.
Research quantum mechanical methods of bioobjects.
Monday, March 30, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, March 30, 2015 Dr. Jaehoon Yu Wave Motion.
PHYS 3313 – Section 001 Lecture #18
Chapter 5: Quantum Mechanics
Wednesday, Oct. 31, 2012PHYS , Fall 2012 Dr. Amir Farbin 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, Oct. 31, 2012 Dr. Amir Farbin Reflection.
Monday, Nov. 4, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, Nov. 4, 2013 Dr. Jaehoon Yu Finite Potential.
Monday, Apr. 4, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #16 Monday, Apr. 4, 2005 Dr. Jae Yu Symmetries Why do we care about the symmetry?
CHAPTER 6 Quantum Mechanics II
Wednesday, Nov. 7, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Wednesday, Nov. 7, 2012 Dr. Jaehoon Yu Solutions for.
Monday, April 13, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 19 Monday, April 13, 2015 Dr. Jaehoon Yu Refresher:
Wednesday, April 1, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, April 1, 2015 Dr. Jaehoon Yu Probability.
Wednesday, April 15, 2015 PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 20 Wednesday, April 15, 2015 Dr. Jaehoon Yu Finite.
Nanoelectronics Chapter 4 Free and Confined Electrons
Review for Exam 2 The Schrodinger Eqn.
Schrodinger’s Equation for Three Dimensions
Solutions of Schrodinger Equation
CHAPTER 5 The Schrodinger Eqn.
CHAPTER 5 The Schrodinger Eqn.
CHAPTER 5 The Schrodinger Eqn.
PHYS 3313 – Section 001 Lecture #22
PHYS 3313 – Section 001 Lecture #21
PHYS 3313 – Section 001 Lecture #17
PHYS274 Atomic Structure I
CHAPTER 6 Quantum Mechanics II
CHAPTER 5 The Schrodinger Eqn.
Elements of Quantum Mechanics
PHYS 3313 – Section 001 Lecture #21
Quantum Two.
PHYS 3313 – Section 001 Lecture #21
CHAPTER 5 The Schrodinger Eqn.
PHYS 3313 – Section 001 Lecture #20
PHYS 3313 – Section 001 Lecture #22
PHYS 3313 – Section 001 Lecture #20
Particle in a Box.
Particle in a box Potential problem.
The Schrödinger Equation
CHAPTER 3 PROBLEMS IN ONE DIMENSION Particle in one dimensional box
PHYS 3313 – Section 001 Lecture #19
Chapter 40 Quantum Mechanics
Clicker Questions Lecture Slides Professor John Price, Spring 2019
PHYS 3313 – Section 001 Lecture #18
PHYS 3313 – Section 001 Lecture #20
PHYS 3313 – Section 001 Lecture #17
Presentation transcript:

1 PHYS 3313 – Section 001 Lecture #20 Monday, Apr. 7, 2014 Dr. Jaehoon Yu 3D Infinite Potential Well Degeneracy Simple Harmonic Oscillator Barriers and Tunneling Monday, Apr. 7, 2014PHYS , Spring 2014 Dr. Jaehoon Yu

Monday, Apr. 7, 2014PHYS , Spring 2014 Dr. Jaehoon Yu 2 Announcements Research paper deadline is Monday, Apr. 28 Research presentation deadline is Sunday, Apr. 27 Reminder: Homework #4 –End of chapter problems on CH5: 8, 10, 16, 24, 26, 36 and 47 –Due this Wednesday, Apr. 9 Bring out special project #4 at the end of class

Reminder: Special project #5 Show that the Schrodinger equation becomes Newton’s second law in the classical limit. (15 points) Deadline Monday, Apr. 21, 2014 You MUST have your own answers! Monday, Apr. 7, PHYS , Spring 2014 Dr. Jaehoon Yu

The wave function must be a function of all three spatial coordinates. We begin with the conservation of energy Multiply this by the wave function to get Now consider momentum as an operator acting on the wave function. In this case, the operator must act twice on each dimension. Given: The three dimensional Schrödinger wave equation is Three-Dimensional Infinite-Potential Well Monday, Apr. 7, PHYS , Spring 2014 Dr. Jaehoon Yu Rewrite

Consider a free particle inside a box with lengths L 1, L2 L2 and L3 L3 along the x, y, and z axes, respectively, as shown in the Figure. The particle is constrained to be inside the box. Find the wave functions and energies. Then find the ground energy and wave function and the energy of the first excited state for a cube of sides L. Ex 6.10: Expectation values inside a box Monday, Apr. 7, PHYS , Spring 2014 Dr. Jaehoon Yu What are the boundary conditions for this situation? Particle is free, so x, y and z wave functions are independent from each other! Each wave function must be 0 at the wall!Inside the box, potential V is 0. A reasonable solution is Using the boundary condition So the wave numbers are

Consider a free particle inside a box with lengths L 1, L 2 and L 3 along the x, y, and z axes, respectively, as shown in Fire. The particle is constrained to be inside the box. Find the wave functions and energies. Then find the round energy and wave function and the energy of the first excited state for a cube of sides L. Ex 6.10: Expectation values inside a box Monday, Apr. 7, PHYS , Spring 2014 Dr. Jaehoon Yu The energy can be obtained through the Schr ö dinger equation What is the ground state energy? When are the energies the same for different combinations of ni?ni? E 1,1,1 when n 1 =n 2 =n 3 =1, how much?

Degeneracy* Analysis of the Schrödinger wave equation in three dimensions introduces three quantum numbers that quantize the energy. A quantum state is degenerate when there is more than one wave function for a given energy. Degeneracy results from particular properties of the potential energy function that describes the system. A perturbation of the potential energy, such as the spin under a B field, can remove the degeneracy. Monday, Apr. 7, PHYS , Spring 2014 Dr. Jaehoon Yu *Mirriam-webster: having two or more states or subdivisions