@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.

Slides:



Advertisements
Similar presentations
DNS – Domain Name system Converting domain names to IP addresses since 1983.
Advertisements

 This Class  Chapter 9  Next Class  Wrap up this semester  Demo/discuss programming assignments  Review what we have learned  Questionnaire/Feedback.
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Term B10.
1 EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Spring 2012 Spring 2012.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
2: Application Layer1 FTP, SMTP and DNS. 2: Application Layer2 FTP: separate control, data connections r FTP client contacts FTP server at port 21, specifying.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts, routers: –IP address (32 bit) - used for addressing datagrams –“name”, e.g., gaia.cs.umass.edu.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
Application Layer session 1 TELE3118: Network Technologies Week 12: DNS Some slides have been taken from: r Computer Networking: A Top Down Approach.
1 Application layer r Electronic Mail m SMTP, POP3, IMAP r DNS r P2P file sharing.
CPSC 441: DNS1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes derived.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Name Resolution and DNS. Domain names and IP addresses r People prefer to use easy-to-remember names instead of IP addresses r Domain names are alphanumeric.
Chapter 2 Application Layer
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Introduction 1 Lecture 8 Application Layer (DNS, p2p) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
NET0183 Networks and Communications Lecture 25 DNS Domain Name System 8/25/20091 NET0183 Networks and Communications by Dr Andy Brooks.
CIS3360: Security in Computing Chapter 6 : Network Security II Cliff Zou Spring 2012.
CS 4396 Computer Networks Lab
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts: – IP address (32 bit) - used for addressing datagrams – “name”, e.g.,
DNS & P2P A PPLICATIONS د. عـــادل يوسف أبو القاسم.
Domain Name System (DNS)
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 10 Omar Meqdadi Department of Computer Science and Software Engineering University.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
21-1 Last time □ Finish HTTP □ FTP This time □ SMTP ( ) □ DNS.
CS 471/571 Domain Name Server Slides from Kurose and Ross.
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 2: Application.
DNS: Domain Name System
Review: –Which protocol is used to move messages around in the Internet? –Describe how a message is moved from the sender’s UA to the receiver’s.
1 DNS: Domain Name System People: many identifiers: m SSN, name, Passport # Internet hosts, routers: m IP address (32 bit) - used for addressing datagrams.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
1 Application Layer Lecture 6 Imran Ahmed University of Management & Technology.
DNS: Domain Name System People: many identifiers: – SSN, name, Passport # Internet hosts, routers: – IP address (32 bit) - used for addressing datagrams.
Lecture 6: Video Streaming 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser types [NSDI 2014]
25.1 Chapter 25 Domain Name System Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 DNS: Domain Name System People have many identifiers: SSN, name, passport number Internet hosts, routers have identifiers, too: IP.
CPSC 441: DNS 1. DNS: Domain Name System Internet hosts: m IP address (32 bit) - used for addressing datagrams m “name”, e.g., - used by.
CS 3830 Day 10 Introduction 1-1. Announcements r Quiz #2 this Friday r Program 2 posted yesterday 2: Application Layer 2.
Lecture 5: Web Continued 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser types [NSDI 2014]
1 EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer Networking book.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
1 Kyung Hee University Chapter 19 DNS (Domain Name System)
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
1. Internet hosts:  IP address (32 bit) - used for addressing datagrams  “name”, e.g., ww.yahoo.com - used by humans DNS: provides translation between.
Application Layer, 2.5 DNS 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.
Important r On Friday, could you ask students to please me their groups (one per group) for Project 2 so we can assign IP addresses. I’ll send.
CSEN 404 Application Layer II Amr El Mougy Lamia Al Badrawy.
Spring 2006 CPE : Application Layer_DNS 1 Special Topics in Computer Engineering Application layer: Domain Name System Some of these Slides are.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Last time Finish HTTP FTP.
2: Application Layer 1 Some network apps r r Web r Instant messaging r Remote login r P2P file sharing r Multi-user network games r Streaming stored.
Introduction to Networks
Session 6 INST 346 Technologies, Infrastructure and Architecture
Chapter 9: Domain Name Servers
Introduction to Communication Networks
Chapter 2 Application Layer
Chapter 7: Application layer
Cookies, Web Cache & DNS Dr. Adil Yousif.
Chapter 2: Application layer
DNS: Domain Name System
FTP, SMTP and DNS 2: Application Layer.
Chapter 2 Application Layer
Lecture 3 – Chapter 2 CIS 5617, Fall 2019 Anduo Wang
Presentation transcript:

@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the book “Computer Networking, A Top-Down Approach” All material copyright J.F Kurose and K.W. Ross, All Rights Reserved CS 283Computer Networks Spring 2012 Instructor: Yuan Xue

@Yuan Xue Chapter 2: Application layer 2.1 Principles of network applications 2.2 Web and HTTP 2.3 Electronic Mail SMTP, POP3, IMAP 2.4 DNS

@Yuan Xue DNS: Domain Name System People: many identifiers: SSN, name, passport # Internet hosts, routers: IP address (32 bit) - used for addressing datagrams “name”, e.g., ww.yahoo.com - used by humans Q: map between IP addresses and name ? Domain Name System: distributed database implemented in hierarchy of many name servers application-layer protocol host, routers, name servers to communicate to resolvenames (address/name translation) note: core Internet function, implemented as application- layer protocol complexity at network’s “edge”

@Yuan Xue DNS Why not centralize DNS? single point of failure traffic volume distant centralized database maintenance doesn’t scale! DNS services hostname to IP address translation host aliasing Canonical, alias names mail server aliasing load distribution replicated Web servers: set of IP addresses for one canonical name

@Yuan Xue Root DNS Servers com DNS servers org DNS serversedu DNS servers poly.edu DNS servers umass.edu DNS servers yahoo.com DNS servers amazon.com DNS servers pbs.org DNS servers Distributed, Hierarchical Database Client wants IP for 1 st approx: client queries a root server to find com DNS server client queries com DNS server to get amazon.com DNS server client queries amazon.com DNS server to get IP address for

@Yuan Xue DNS: Root name servers contacted by local name server that can not resolve name root name server: contacts authoritative name server if name mapping not known gets mapping returns mapping to local name server 13 root name servers worldwide b USC-ISI Marina del Rey, CA l ICANN Los Angeles, CA e NASA Mt View, CA f Internet Software C. Palo Alto, CA (and 36 other locations) i Autonomica, Stockholm (plus 28 other locations) k RIPE London (also 16 other locations) m WIDE Tokyo (also Seoul, Paris, SF) a Verisign, Dulles, VA c Cogent, Herndon, VA (also LA) d U Maryland College Park, MD g US DoD Vienna, VA h ARL Aberdeen, MD j Verisign, ( 21 locations)

@Yuan Xue TLD and Authoritative Servers Top-level domain (TLD) servers: responsible for com, org, net, edu, etc, and all top- level country domains uk, fr, ca, jp. Network Solutions maintains servers for com TLD Educause for edu TLD Authoritative DNS servers: organization’s DNS servers, providing authoritative hostname to IP mappings for organization’s servers (e.g., Web, mail). can be maintained by organization or service provider

@Yuan Xue Local Name Server does not strictly belong to hierarchy each ISP (residential ISP, company, university) has one. also called “default name server” when host makes DNS query, query is sent to its local DNS server acts as proxy, forwards query into hierarchy

@Yuan Xue requesting host cis.poly.edu gaia.cs.umass.edu root DNS server local DNS server dns.poly.edu authoritative DNS server dns.cs.umass.edu 7 8 TLD DNS server DNS name resolution example Host at cis.poly.edu wants IP address for gaia.cs.umass.edu iterative query: contacted server replies with name of server to contact “I don’t know this name, but ask this server”

@Yuan Xue requesting host cis.poly.edu gaia.cs.umass.edu root DNS server local DNS server dns.poly.edu authoritative DNS server dns.cs.umass.edu 7 8 TLD DNS server 3 recursive query: puts burden of name resolution on contacted name server DNS name resolution example

@Yuan Xue DNS: caching and updating records once (any) name server learns mapping, it caches mapping cache entries timeout (disappear) after some time TLD servers typically cached in local name servers  Thus root name servers not often visited update/notify mechanisms under design by IETF RFC

@Yuan Xue DNS records DNS: distributed db storing resource records (RR) Type=NS name is domain (e.g. foo.com) value is hostname of authoritative name server for this domain RR format: (name, value, type, ttl) Type=A name is hostname value is IP address Type=CNAME name is alias name for some “canonical” (the real) name is really servereast.backup2.ibm.com value is canonical name Type=MX value is name of mailserver associated with name

@Yuan Xue DNS protocol, messages DNS protocol :queryand reply messages, both with same message format msg header identification: 16 bit # for query, reply to query uses same # flags: query or reply recursion desired recursion available reply is authoritative

@Yuan Xue DNS protocol, messages Name, type fields for a query RRs in response to query records for authoritative servers additional “helpful” info that may be used

@Yuan Xue Inserting records into DNS example: new startup “Network Utopia” register name networkuptopia.com at DNS registrar (e.g., Network Solutions) provide names, IP addresses of authoritative name server (primary and secondary) registrar inserts two RRs into com TLD server: (networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, , A) create authoritative server Type A record for Type MX record for networkutopia.com

@Yuan Xue From Principle to Practice Examine the DNS cache on local machine On Windows, use command “ipcofigure /displaydns” Flush the DNS cache “ipcofigure /flushdns”

@Yuan Xue From Principle to Practice Use tool “nslookup” to query the DNS system

@Yuan Xue Checkout the DNS query and reply using Wireshark

@Yuan Xue Chapter 2: Application layer Summary 2.1 Principles of network applications 2.2 Web and HTTP 2.3 Electronic Mail SMTP, POP3, IMAP 2.4 DNS 2.5 Other protocols Telnet (SSH) FTP (SFTP)