Potential Energy (PE or U) Definition: The energy that an object has by virtue of its position relative to the surface of the earth. PE = mgh Compare the.

Slides:



Advertisements
Similar presentations
Work Done by a Constant Force
Advertisements

Energy and its Conservation
Work, Energy & Power Honors Physics. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Sect. 8-3: Mechanical Energy & It’s Conservation.
Work and Energy Chapter 7.
Chapter 9:Linear Momentum 8-4 Problem Solving Using Conservation of Mechanical Energy 8-5 The Law of Conservation of Energy 8-6 Energy conservation with.
1a. Positive and negative work
Work and Energy CHAPTER 6. A New Perspective on Motion  We have been analyzing motion through the perspective of Newton’s Laws dealing with acceleration,
Chapter 5 Work and Energy
Chapter 6 Work and Energy. 6.1 Work Done by a Constant Force.
WORK In order for work to be done, three things are necessary:
Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Introduction to Work Monday, September 14, 2015 Work Work tells us how much a force or combination of forces changes the energy of a system. Work is.
Chapter 5 Work, Energy, Power Work The work done by force is defined as the product of that force times the parallel distance over which it acts. The.
Chapter 5 – Work and Energy If an object is moved by a force and the force and displacement are in the same direction, then work equals the product of.
Physics Chapter 11 Energy.
The Work Energy Theorem Up to this point we have learned Kinematics and Newton's Laws. Let 's see what happens when we apply BOTH to our new formula for.
Conservative and Non-Conservative Forces Teacher: Luiz Izola
Potential Energy and Conservative Forces
Mechanics Work and Energy Chapter 6 Work  What is “work”?  Work is done when a force moves an object some distance  The force (or a component of the.
Energy m m Physics 2053 Lecture Notes Energy.
Physics 3.3. Work WWWWork is defined as Force in the direction of motion x the distance moved. WWWWork is also defined as the change in total.
Chapter 8 - Potential Energy and Conservation of Energy Conservative vs. Non-conservative Forces Definition of Potential Energy Conservation Of Mechanical.
Review and then some…. Work & Energy Conservative, Non-conservative, and non-constant Forces.
Work and Energy. Work a force that causes a displacement of an object does work on the object W = Fdnewtons times meters (N·m) or joules (J)
Work and Energy Chapter 7 Conservation of Energy Energy is a quantity that can be converted from one form to another but cannot be created or destroyed.
1 Work When a force moves something, work is done. Whenever work is done, energy is changed into a different form. Chemical energy → Kinetic energy.
Chapter 6 Work and Energy.
Physics 1D03 - Lecture 22 Potential Energy Work and potential energy Conservative and non-conservative forces Gravitational and elastic potential energy.
Conservative Forces: The forces is conservative if the work done by it on a particle that moves between two points depends only on these points and not.
© 2010 Pearson Education, Inc. Lecture Outline Chapter 5 College Physics, 7 th Edition Wilson / Buffa / Lou.
Work and Energy Level 1 Physics. OBJECTIVES AND ESSENTIAL QUESTIONS OBJECTIVES Define and apply the concepts of work done by a constant force, potential.
Chapter 6 Work and Energy. Force,displacement  WORK.
Work and Energy.
Chapter 6 Work and Energy 6.1 – Work Work Formula & Units Positive & Negative Work 6.2 – Work-Energy Theorem & Kinetic Energy KE Formula & Units 6.3 –
Lecture 10: Work & Energy.
Ch. 6, Work & Energy, Continued. Summary So Far Work-Energy Theorem: W net = (½)m(v 2 ) 2 - (½)m(v 1 ) 2   KE Total work done by ALL forces! Kinetic.
WORK A force that causes a displacement of an object does work on the object. W = F d Work is done –if the object the work is done on moves due to the.
Work, Energy & Power AP Physics 1. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Unit 8 (Chapter 10 & 11) Work, Energy and Power. Work “Work” means many things in different situations. When we talk about work in physics we are talking.
WORK, ENERGY & POWER AP Physics 1. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Energy 1. Work 2. Kinetic Energy 3. Work-Energy Principle 4. Friction 5. Potential Energy 6. Conservation of Energy ©2013 Robert Chuckrow.
Pre-AP Physics.  Energy is expressed in JOULES (J)  4.19 J = 1 calorie  Energy can be expressed more specifically by using the term WORK(W) Work =
Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
ENERGY Objectives: After completing this module, you should be able to: Define kinetic energy and potential energy, along with the appropriate units.
Conservation of Energy IT’S THE LAW. Lifting a Ball When you lift a ball to a certain height you do work on it. When you lift a ball to a certain height.
Chapter 5 Work and Energy. Mechanical Energy  Mechanical Energy is the energy that an object has due to its motion or its position.  Two kinds of mechanical.
Section 6-3 Gravitational Potential Energy. Warm-Up #1 A sailboat is moving at a constant velocity. Is work being done by a net external force acting.
WHY DO WE DO WORK? Work transfers energy from one object to another. So, what is energy? –Energy is the ability to do work. Major forms (for our purposes)
Energy Notes Energy is one of the most important concepts in science. An object has energy if it can produce a change in itself or in its surroundings.
Energy, Work and Power. Work, Energy and Power Objectives: Describe the relationship between work and energy Calculate the work done by a constant applied.
PHY 101: Lecture Work Done by a Constant Force
Work, Energy & Power PreAP Physics. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Work, Energy & Power Honors Physics. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Work, Energy & Power AP Physics 1.
Work, Energy & Power AP Physics 1.
Work, Energy & Power AP Physics 1.
1a. Positive and negative work
Chapter 5 Work and Energy
Today: Work, Kinetic Energy, Potential Energy
Today: Work, Kinetic Energy, Potential Energy
Work, Energy & Power AP Physics 1.
Last Time: Work, Kinetic Energy, Work-Energy Theorem Today:
Work, Energy & Power Honors Physics.
PE, KE Examples Answers 1. A shotput has a mass of 7.0 kg. Find the potential energy of a shotput raised to a height of 1.8 m. m = 7.0 kg h.
Work, Energy & Power AP Physics B.
Work, Energy & Power Physics.
Work, Energy & Power AP Physics B.
Physics: Work and Energy
Presentation transcript:

Potential Energy (PE or U) Definition: The energy that an object has by virtue of its position relative to the surface of the earth. PE = mgh Compare the amount of work done by the girl as compared to the amount of work done by the boy. (Assume that each massive object is the same) Work done by boy = Work done by girl

Conservative Forces Nonconservative Forces F grav F spring F app F frict F air F tens F norm Conservative Forces allow for an object’s total energy (PE + KE) to remain unchanged. Nonconservative Forces do NOT allow for an object’s total energy (PE + KE) to remain unchanged.

Total Mechanical Energy:The total amount of energy (PE + KE) of an object.

Example W=Fxcos  A 70 kg base-runner begins to slide into second base when moving at a speed of 4.0 m/s. The coefficient of kinetic friction between his clothes and the earth is He slides so that his speed is zero just as he reaches the base (a) How much energy is lost due to friction acting on the runner? (b) How far does he slide?

Example A 5.00 g bullet moving at 600 m/s penetrates a tree trank to a depth of 4.00 cm. (a) Use the work-energy theorem, to determine the average frictional force that stops the bullet.(b) Assuming that the frictional force is constant, determine how much time elapses between the moment the bullet enters the tree and the moment it stops moving

Lifting mass at a constant speed Suppose you lift a mass upward at a constant speed,  v = 0 &  K=0. What does the work equal now? Since you are lifting at a constant speed, your APPLIED FORCE equals the WEIGHT of the object you are lifting. Since you are lifting you are raising the object a certain “y” displacement or height above the ground. When you lift an object above the ground it is said to have POTENTIAL ENERGY

Suppose you throw a ball upward What does work while it is flying through the air? Is the CHANGE in kinetic energy POSITIVE or NEGATIVE? Is the CHANGE in potential energy POSITIVE or NEGATIVE? GRAVITY NEGATIVE POSITIVE

ENERGY IS CONSERVED The law of conservation of mechanical energy states: Energy cannot be created or destroyed, only transformed! Energy BeforeEnergy After Am I moving? If yes, K o Am I above the ground? If yes, U o Am I moving? If yes, K Am I above the ground? If yes, U

Energy consistently changes forms

Example A 2.0 m pendulum is released from rest when the support string is at an angle of 25 degrees with the vertical. What is the speed of the bob at the bottom of the string?

Power One useful application of Energy is to determine the RATE at which we store or use it. We call this application POWER! As we use this new application, we have to keep in mind all the different kinds of substitutions we can make. Unit = WATT or Horsepower