SS433 as a natural laboratory for astrophysical neutrinos Matías M. Reynoso (Mar del Plata University - CONICET, Argentina) In colaboration with Gustavo.

Slides:



Advertisements
Similar presentations
ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
Advertisements

A two-zone model for the production of prompt neutrinos in gamma-ray bursts Matías M. Reynoso IFIMAR-CONICET, Mar del Plata, Argentina GRACO 2, Buenos.
Method To determine the multiplicity parameter and the magnetization parameter  one can use the dependence on the visible position of the core of the.
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Sub-THz Component of Large Solar Flares Emily Ulanski December 9, 2008 Plasma Physics and Magnetohydrodynamics.
Presented by Steve Kliewer Muon Lifetime Experiment: A Model.
Theoretical Overview on High-Energy Emission in Microquasars Valentí Bosch i Ramon Universitat de Barcelona Departament d'Astronomia i Meteorologia Barcelona,
Collective effects of stellar winds and unidentified gamma-ray sources Diego F. Torres THE MULTI-MESSENGER APPROACH TO UNIDENTIFIED GAMMA-RAY SOURCES
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
Numerical Modeling of Electromagnetic Radiation from AGN Jets Based on  -ray emission and spectral evolution of pair plasmas in AGN jets Bottcher et al.
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
Angular Distribution of Gamma-rays from Up-to-date p-p Interactions GLAST Science Lunch Talk Aug 3, 2006 Niklas Karlsson SLAC / KTH
GAMMA-RAY COMPACT BINARIES* ASTROPHYSICAL SCENARIOS Félix Mirabel CEA-Saclay-France * Neutron stars & Black holes in stellar binary systems that radiate.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Hard X-Rays & Gamma-Rays Induced by Ultra High Energy Proton Acceleration in Cluster Accretion Shocks Susumu Inoue Felix Aharonian Naoshi Sugiyama (NAO.
First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, Moscow,
NEEP 541 Radiation Interactions Fall 2003 Jake Blanchard.
Constraints of hadronic interaction models from the cosmic muon observations. L.G. Dedenko, A.V. Lukyashin, G.F. Fedorova, T.M. Roganova M.V. Lomonosov.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
The TeV view of the Galactic Centre R. Terrier APC.
MICROQUASARS: DISK-JET COUPLING
High energy emission from jets – what can we learn? Amir Levinson, Tel Aviv University Levinson 2006 (IJMPA, review)
Leptonic and Hadronic Modeling of Gamma-Ray Blazars Markus Böttcher and Anita Reimer North-West University Universit ӓ t Innsbruck Potchefstroom, Innsbruck.
Hirotaka Ito Waseda University Collaborators Motoki Kino SISSA ISAS/JAXA ISS Science Project Office Naoki Isobe ISAS/JAXA ISS Science Project Office Nozomu.
Atmospheric shower simulation studies with CORSIKA Physics Department Atreidis George ARISTOTLE UNIVERSITY OF THESSALONIKI.
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Roland Crocker Monash University The  -ray and radio glow of the Central Molecular Zone and the Galactic centre magnetic field.
Cosmic Rays GNEP Teacher Workshop Steve Shropshire, July 2007.
Broadband Properties of Blazars
G.S. Bianovatyi-Kogan, Yu.N. Krivosheev Space Research Institute, Moscow (IKI RAN) Thermal balance of the jet in the microquasar SS433 HEPRO-III, Barcelona.
Multi-Zone Modeling of Spatially Non-uniform Cosmic Ray Sources Armen Atoyan Concordia University, Montreal FAA60 Barcelona, 7 November 2012.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
The effect of neutrinos on the initial fireballs in GRB ’ s Talk based on astro-ph/ (HK and Ralph Wijers) Hylke Koers NIKHEF & University of Amsterdam.
Stochastic Wake Field particle acceleration in GRB G. Barbiellini (1), F. Longo (1), N.Omodei (2), P.Tommasini (3), D.Giulietti (3), A.Celotti (4), M.Tavani.
Gamma-rays, neutrinos and cosmic rays from microquasars Gustavo E. Romero (IAR – CONICET & La Plata University, Argentina)
Introduction to the High Energy Astrophysics Introductory lecture.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Il (tl) = Il (0) e-t(l) + Bl(T) (1 – e-t(l))
Jets Two classes of jets from X-ray binaries
Modeling the Emission Processes in Blazars Markus Böttcher Ohio University Athens, OH.
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
Gamma-ray production in Be-XPBs Brian van Soelen University of the Free State supervisor P.J. Meintjes.
PHY418 Particle Astrophysics
Hadronic cascades in GRBs and AGNs Katsuaki Asano (Tokyo Tech.) Collaboration with S.Inoue, P.Meszaros M.Kino.
Neutrinos produced by heavy nuclei injected by the pulsars in massive binaries Marek Bartosik & W. Bednarek, A. Sierpowska Erice ISCRA 2004.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
The Hybrid Scheme of Simulations of the Electron- photon and Electron-hadron Cascades In a Dense Medium at Ultra-high Energies L.G. Dedenko M.V. Lomonosov.
Masaki Yamaguchi, F. Takahara Theoretical Astrophysics Group Osaka University, Japan Workshop on “Variable Galactic Gamma-ray Source” Heidelberg December.
A search for neutrinos from long-duration GRBs with the ANTARES underwater neutrino telescope arxiv C.W. James for the ANTARES collaboration.
The non-thermal broadband spectral energy distribution of radio galaxies Gustavo E. Romero Instituto Argentino de Radio Astronomía (IAR-CCT La Plata CONICET)
Alexander Kappes Erlangen Centre for Astroparticle Physics XIV Lomonosov Conference Moscow, August 25, 2009 High-energy neutrinos from Galactic sources.
Gamma-ray Bursts from Synchrotron Self-Compton Emission Juri Poutanen University of Oulu, Finland Boris Stern AstroSpace Center, Lebedev Phys. Inst., Moscow,
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
Efficient computation of photohadronic interactions
Gamma Rays from the Radio Galaxy M87
Service d’Astrophysique, CEA/Saclay (France)
Gamma-ray bursts from magnetized collisionally heated jets
Active Galactic Nuclei (AGN)
High Energy emission from the Galactic Center
Particle Acceleration in the Universe
X-Ray Binaries as Gamma-Ray Sources
Modelling of non-thermal radiation from pulsar wind nebulae
Potential Gamma-ray Emissions from Low-Mass X-ray Binary Jets
Presentation transcript:

SS433 as a natural laboratory for astrophysical neutrinos Matías M. Reynoso (Mar del Plata University - CONICET, Argentina) In colaboration with Gustavo E. Romero (IAR-CONICET, Argentina) and Hugo R. Christiansen (UECE, Brazil)

Outline  Overview of SS433  HE processes in the jets - Protons and Electrons: shock-accelerated - Protons and Electrons: shock-accelerated - pp and pγ interactions: produce pions - pp and pγ interactions: produce pions - pions interact and decay giving leptons and γ-rays - pions interact and decay giving leptons and γ-rays  Neutrino flux  Absorption of γ-rays - γγ and γN interactions - γγ and γN interactions  Gamma-ray flux  Discussion

SS433: a precessing microquasar with heavy jets  Microquasar: normal star + compact object with jets  Jets with high kinetic power: L k =10 39 erg/s  Fe lines from detected from jets (Migliari et al. 2002)  Jets and extended disk wind in precession ( P prec =162 d)  Potential neutrino source (Eichler 1980, Learned & Eichler 1981) Overview of SS433: VLBA

Overview of SS433: a cartoon…

Parameters of the model for SS433

Relativistic particles in the jets  Magnetic Field:  Shock acceleration of electrons and protons Rate: Power in relativistic particles:  One-zone approximation (e.g. Khangulyan et al ) Acceleration zone z0z0z0z0 Jet BH and Injection function: (GeV -1 cm -3 s -1 sr -1 ) Is a fraction q rel of kinetic power MQ SS433 - HE processes in the jets:

Particle interaction rates Proton energy loss: Electron energy loss: MQ SS433 - HE processes in the jets:

Distributions of primary particles  Balance equation MQ SS433 - HE processes in the jets:

Secondary pions and muons  Balance equation  Injection functions: SIBYLL code (Kelner et al. 2006) SOPHIA code (Atoyan & Dermer 2003, see also Kelner et al. 2008) MQ SS433 - HE processes in the jets:

Charged pions and muon distributions MQ SS433 - HE processes in the jets:

Gamma-ray and neutrino emission MQ SS433 - HE processes in the jets: Kinematics of decays (e.g. Lipari et al 2008) (Kelner et al. 2006) Differential γ-ray flux at Earth [cm -2 s -1 GeV -1 ] Attenuation effect γ ’s: ’s: From Differential α flux at Earth [cm -2 s -1 GeV -1 ] Attenuation effect -Oscillation effect

Differential Neutrino flux at Earth Neutrino flux predictions

Producción de neutrinos en microcuásares con contenido hadrónico Integrated neutrino flux Here, q rel = 10 -3

Gamma-ray absorption in MQs  γ-rays can be absorbed by:  Optical depth Differential optical depth

Gamma-ray absorption in SS433: Absorption due to γγ interactions  Target photons from the star:  Differential optical depth (Gould & Schreder 1967) with T ✹ =8500 K for SS433 with T ✹ =8500 K for SS433  Target photons from the extended disk  UV emission: Black body with T = K, (10 3 Å < λ <10 4 Å) R UV = 33 R ✹ (Gies et al. 2002) R UV = 33 R ✹ (Gies et al. 2002)  IR emission:, (2µm < λ <12 µm) R IR = 50 R ✹ (Fuchs et al. 2005) R IR = 50 R ✹ (Fuchs et al. 2005)

γγ absorption γγ absorption Starlight contribution Gamma-ray absorption in SS433:

γγ absorption γγ absorption Contribution due to IR emission Contribution due to UV emission Gamma-ray absorption in SS433:

Absorption due to γN interactions  Optical depth Cross section Density of the star: Densidad of the extended disk: absorption Gamma-ray absorption in SS433:

γN optical depth Gamma-ray absorption in SS433:

Total optical depth For γ-rays originated at jet base Gamma-ray absorption in SS433:

Effects on a gamma signal Gamma-ray absorption in SS433:

Gamma-Ray flux: Integrated gamma-ray fluxes From Reynoso et al. (2008) MNRAS, with proton injection along the jet

Average fluxes as a function of q rel = L rel / L k

Final comments  Main conclusion: the consistency of the model will be tested with future neutrino and gamma-ray observations. and gamma-ray observations.  Several parameters such as the magnetic field in the jet, the opening angle, and the power in relativistic particles are to be adjusted.  Model should explain both gamma-ray observations at different energies and VHE neutrinos.  A more realistic treatment is necessary: e.g. leave one-zone approximation.

Some useful references Atoyan A. M. & Dermer C. D., 2003, ApJ 586, 79 Eichler D., DUMAND proceeding, 1980 Learned J. & Eichler D, Scientific American, Feb Fuchs Y., Miramond L. K., & Ábrahám P., 2006, A&A, 445, 1041 Gallo E., Fender R., Kaiser C., Russell D., Morganti R., Oosterloo T., & Heinz S., 2005, Nature, 436, 819 Gies D. R., McSwain M. V., Riddle, R. L., Wang Z., Wiita P. J., Wingert D. W., 2002a, ApJ, 566, 1069 Gould R. J. & Schréder G. P., 1967, Phys. Rev., 155, 1404 Kelner S. R., Aharonian F. A., & Bugayov V. V., 2006, Phys. Rev. D, 74, Kelner S. R. & Aharonian F. A, arXiv: v1, 2008 Lipari, P., Lusignoli, M., & Meloni, D. 2007, Phys. Rev. D 75, Migliari S., Fender R.,& Méndez M., 2002, Science, 297, 1673