Yannis K. Semertzidis Brookhaven National Laboratory HEP Seminar SLAC, 27 April 2004 Muon g-2: Powerful Probe of Physics Beyond the SM. Present Status.

Slides:



Advertisements
Similar presentations
(g – 2)  B. Lee Roberts e + e - collisions  to  : Novosibirsk 1 March p. 1/30 Muon (g-2) to 0.2 ppm B. Lee Roberts Department of Physics Boston.
Advertisements

B. Lee Roberts, SPIN2004 –Trieste -11 September p. 1/54 New Results on Muon (g-2) Past, Present and Future Experiments B. Lee Roberts Department.
B. Lee Roberts, NuFact WG4: 24 June p. 1/36 Muon (g-2) Past, Present and Future B. Lee Roberts Department of Physics Boston University
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
Muon g-2 experimental results & theoretical developments
Measurement of the muon anomaly to high and even higher precision David Hertzog* University of Illinois at Urbana-Champaign * Representing the E821 Collaboration:
B. Lee Roberts, BNL PAC 9 September p. 1/29 Muon (g-2) to 0.20 ppm P969 B. Lee Roberts Representing the new g-2 collaboration: Boston, BNL, BINP,
B. Lee Roberts, Oxford University, 19 October p. 1/55 The Muon: A Laboratory for Particle Physics Everything you always wanted to know about the.
B. Lee Roberts, PANIC05, Santa Fe, 27 October, p. 1/35 Muon (g-2) Status and Plans for the Future B. Lee Roberts Department of Physics Boston University.
B. Lee Roberts, HIFW04, Isola d’Elba, 6 June p. 1/39 Future Muon Dipole Moment Measurements at a high intensity muon source B. Lee Roberts Department.
A new method of measuring the muon g-2 Francis J.M. Farley Trinity College Dublin.
1 g-2 phase study from GEANT simulation Qinzeng Peng Advisor: James Miller Boston University Sep 28, 2004 Muon g-2 collaboration at BU: Lee Roberts, Rober.
LHC’s Second Run Hyunseok Lee 1. 2 ■ Discovery of the Higgs particle.
Muon and electron g-2 A charged particle which has spin angular momentum s will have also a magnetic moment m. The ratio of the magnetic to angular moments.
Measurement of the Positive Muon Lifetime to 1 ppm David Webber Preliminary Examination March 31, 2005.
Measurements of R Value and Hadronic Form Factors at BES Haiming Hu Institute of High Energy Physics, CAS, Beijing Novosibirsk, Russian Feb. 27 – Mar.
Magnetic & Electric Dipole Moments. Yannis K. Semertzidis Brookhaven National Lab Axion Academic Training CERN, 1 December 2005 Muon g-2 experiment EDMs:
Conveneers: M. Grassi (INFN, Pisa), K. Ishida (RIKEN), Y. Semertzidis (BNL) Summary of WG4, Part Two. Yannis Semertzidis, BNL 1 August, 2004 Most muon.
ENHANCED DIRECT PHOTON PRODUCTION IN 200 GEV AU+AU IN PHENIX Stefan Bathe for PHENIX, WWND 2009.
Muon g-2 Experiment at Fermilab, Liang Li, SPCS 2013 June 5 th, Shanghai Particle Physics and Cosmology Symposium - SPCS2013 The (new) muon g-2.
October 4-5, Electron Lens Beam Physics Overview Yun Luo for RHIC e-lens team October 4-5, 2010 Electron Lens.
Muon (g-2) Experiments Matthew Wright Luo Ouyang.
Yannis K. Semertzidis Brookhaven National Laboratory Seminar IUCF, 21 May 2004 EDMs: Why are they important? Our Universe: The Symmetry that isn’t EDM.
G-2 accelerator and cryo needs Mary Convery Muon Campus Review 1/23/13.
Measurements of Transverse Spin Effects with the Forward Pion Detector of STAR Larisa Nogach Institute of High Energy Physics, Protvino for the STAR collaboration.
1 Electroweak Physics Lecture 5. 2 Contents Top quark mass measurements at Tevatron Electroweak Measurements at low energy: –Neutral Currents at low momentum.
June 17, 2004 / Collab Meeting Strategy to reduce uncertainty on a  to < 0.25 ppm David Hertzog University of Illinois at Urbana-Champaign n Present data.
CP-Violation and Baryon Asymmetry in Universe Electric Dipole Moments of Fundamental Particles Yannis K. Semertzidis Brookhaven National Lab Colloquium.
Initial State Radiation and Inclusive Hadron Production at B A B AR Fabio Anulli University of Perugia, INFN – Laboratori Nazionali di Frascati On behalf.
Yannis K. Semertzidis Brookhaven National Laboratory Seminar KVI, 1 July 2004 EDMs: Why are they important? Our Universe: The Symmetry that isn’t EDM Experimental.
Measurement of Vus. Recent NA48 results on semileptonic and rare Kaon decays Leandar Litov, CERN On behalf of the NA48 Collaboration.
K.K. Gan The Ohio State University New Results on  Lepton July 17, 2003.
Oct 6, 2008Amaresh Datta (UMass) 1 Double-Longitudinal Spin Asymmetry in Non-identified Charged Hadron Production at pp Collision at √s = 62.4 GeV at Amaresh.
Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL Arbeitstreffen „Hadronen und Kerne“, Pommersfelden, 26 September 2001 Standard Model.
 B. Lee Roberts, KEK – 21 March p. 1/27 The Magnetic and Electric Dipole Moments of the Muon Lee Roberts for the muon g-2 collaboration Department.
Chunhui Chen, University of Pennsylvania 1 Heavy Flavor Production and Cross Sections at the Tevatron Heavy Flavor Production and Cross Sections at the.
Collective effects in EDM storage ring A.Sidorin, Electron cooling group, JINR, Dubna.
Yannis K. Semertzidis Brookhaven National Laboratory Fundamental Interactions Trento/Italy, June 2004 Theoretical and Experimental Considerations.
Brian Plimley Physics 129 November Outline  What is the anomalous magnetic moment?  Why does it matter?  Measurements of a µ  : CERN.
JPS 2003 in Sendai Measurement of spectral function in the decay 1. Motivation ~ Muon Anomalous Magnetic Moment ~ 2. Event selection 3. mass.
Huaizhang Deng Yale University Precise measurement of (g-2)  University of Pennsylvania.
Muon g-2 and Electric Dipole Moments in Storage Rings: Powerful Probes of Physics Beyond the SM Yannis K. Semertzidis Brookhaven National Lab “Muon g-2.
Study of e+e- annihilation at low energies Vladimir Druzhinin Budker Institute of Nuclear Physics (Novosibirsk, Russia) SND - BaBar Lepton-Photon, August,
Muon Anomalous Magnetic Moment --a harbinger of new physics Chang Liu Physics 564.
Priscilla Cushman University of Minnesota ICHEP Aug 16-22, 2004 Beijjing, China The g-2 Collaboration Boston University, Brookhaven National Laboratory,
Achim Denig Radiative DA F NE MENU 2004 Measurement of the Hadronic Cross Section via Radiative Return at DA  NE Achim Denig for the KLOE Collaboration.
A High Statistics Study of the Decay M. Fujikawa for the Belle Collaboration Outline 1.Introduction 2.Experiment Belle detector 3.Analysis Event selection.
The Muon g-2 Experiment – Investigating how the spin of a muon is affected as it moves through a magnetic field Astrid Rodrigues.
Inclusive cross section and single transverse-spin asymmetry of very forward neutron production at PHENIX Spin2012 in Dubna September 17 th, 2012 Yuji.
Belle General meeting Measurement of spectral function in the decay 1. Motivation 2. Event selection 3. mass spectrum (unfolding) 4. Evaluation.
Measurement of the Muon Anomalous Magnetic Moment to 0.7 ppm Results from the Data of 2000 Yannis K. Semertzidis Brookhaven National Lab Muon g-2 Collaboration.
1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings Yannis K. Semertzidis Brookhaven National Lab Muon g-2 Collaboration and EDM Collaboration.
 Output of Project X  1 “blast” = 9mA*1ms = 5.6e13 (protons)/(1.4 s cycle)  = 4e13 p/s on average (!!)  = 50 kW average beam power  = 8e20/yr (2e7.
Part I: Muon g-2 theory update / motivation Part II: Possibilities for FNAL experiment at 0.1 ppm David Hertzog University of Illinois at Urbana-Champaign.
IV Euridice Collaboration Meeting Marseille, 8-11 February 2006 Hadronic Cross Section measurement at DA  NE with the KLOE detector Hadronic Cross Section.
An Tai QM2004, Oakland Jan.11-17, 2004 STAR 1 STAR measurements of open charm production in dAu collisions at √s NN =200 GeV An Tai For the STAR Collaboration.
Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL on behalf of the muon g-2 collaboration 3 rd Joint NIPNET ION-CATCHER HITRAP Collaboration.
Moriond 2001Jets at the TeVatron1 QCD: Approaching True Precision or, Latest Jet Results from the TeVatron Experimental Details SubJets and Event Quantities.
Yannis K. Semertzidis Brookhaven National Laboratory New opportunities at CERN CERN, 12 May 2009 Storage Ring EDM Experiments The storage ring method can.
– + + – Search for the μEDM using a compact storage ring A. Adelmann 1, K. Kirch 1, C.J.G. Onderwater 2, T. Schietinger 1, A. Streun 1 1 Paul Scherrer.
Marco Incagli - INFN Pisa CERN - 29 apr 2004
ICNPF 2013, Crete, Aug. 28 – Sept. 5, 2013 JEDI - The Jülich Electric Dipole Moment Investigations in Storage Rings | H. Ströher.
Vertical emittance measurement and modeling Correction methods
The Muon g-2 Experiment at FNAL
Does g-2 point to new physics?: Current Status and Future Plans
Charged Particle EDM (CPEDM)
A New Measurement of |Vus| from KTeV
Larisa Nogach Institute of High Energy Physics, Protvino
electric dipole moments (EDM)
JLEIC Collaboration meeting Spring 2016 Ion Polarization with Figure-8
Presentation transcript:

Yannis K. Semertzidis Brookhaven National Laboratory HEP Seminar SLAC, 27 April 2004 Muon g-2: Powerful Probe of Physics Beyond the SM. Present Status and Future Prospects

† † ‡ # Muon g-2 Collaboration † Spokesperson ‡ Project Manager # Resident Spokesperson

Prof. Vernon W. Hughes (1921  2003)

g - 2 for the muon Largest contribution : Other standard model contributions : QED hadronic weak

Theory of a µ a µ (theo) = a µ (QED)+a µ (had)+a µ (weak) + a µ (new physics) a µ (had) = a µ (had1) + a µ (had, HO) + a µ (had, LBL) ? -10   3.5 in units of

Cannot be calculated from pQCD alone because it involves low energy scales. Hadronic contribution (had1) However, by dispersion theory, this a  (had1) can be related to measured in e + e - collisions. or τ decay.

Cannot be calculated from pQCD alone because it involves low energy scales. Hadronic contribution (had1) However, by dispersion theory, this a  (had1) can be related to measured in e + e - collisions or τ decay (assuming CVC).

Evaluation of R M. Davier et al., hep-ph/ v3

Evaluation of R M. Davier et al., hep-ph/ v3

Difference between e + e - and  M. Davier et al., hep-ph/ v3

…Difference between e + e - and  M. Davier et al., Eur. Phys. J. C31, 503 (2003)

a μ (had1,e + e - )=(696.3±7.)× a μ (had1,τ) =(711.0±6.)× e + e - based τ based CorrectCorrect τ-data interpr. wrong Correct Wrong Wrong * Correct Wrong * Wrong T. Blum, hep-lat/ *Other (e + e - ) collaborations are looking into it see, e.g., the KLOE Collaboration, hep-ex/ a μ (exp)- a μ (SM, e + e - )=33.7(11)× a μ (exp) -a μ (SM, τ) = 9.4(11)× M. Davier, hep-ph/ Why?

a μ (had1,e + e - )=(696.3±7.)× a μ (had1,τ) =(711.0±6.)× e + e - based τ based CorrectCorrect τ-data interpr. Wrong** Correct Wrong Wrong * Correct Wrong * Wrong *Other (e + e - ) collaborations are looking into it, e.g., the KLOE Collaboration is about to announce their result. a μ (exp)- a μ (SM, e + e - ) 10 M. Davier, hep-ph/ ** e + e -  0  +  -, whereas τ -  -   -  0 , S.G., F.J., hep-ph/

Theory of a µ a µ (theo) = a µ (QED)+a µ (had)+a µ (weak) + a µ (new physics) a µ (QED) = (0.3) × a µ (had) = (8.) × (based on e + e - ) a µ (had) = (7.) × (based on  ) a µ (weak) = 15.4 (0.3) × a µ (SM) = (8)× (based on e + e - ) a µ (SM) = (7)× (based on  )

Theory and Experiment vs. Year

Experimental Principle

Beamline: Polarized Muon Beam Production

The Muon Storage Ring: B ≈ 1.45T, P μ ≈3.09 GeV/c Inner Ring of Detectors High Proton Intensity from AGS Muon Injection

Spin Precession in g-2 Ring (Top View)  Momentum vector Spin vector

Spin Precession in g-2 Ring (Top View)  Momentum vector Spin vector

4 Billion e + with E>2GeV

5-parameter Function Not Quite Adequate. Fourier Spectrum of the Residuals: f g-2 ≈229 KHz f cbo ≈466 KHz Data of 2000, n = 0.137

Amplitudes of A N, A A, A, Consistent with Values from MC Simulations (10 -2, 10 -3, respectively) Modulation of N 0, A, with f cbo :

2001 Run with Negative Muons In 2001 we have collected 3.7 Billion electrons with E>1.8GeV from a run with negative muons (μ - ). Run at n=0.122 and n=0.142.

Vertical vs. Horizontal Tune

Systematic/Statistical Uncertainties for the ω a Analysis. Systematic Uncertainties Size [ppm] Coherent Betatron Oscillations (CBO) Pileup (Overlapping Signals) Gain Changes Lost Muons Others Total Systematics Statistical Uncertainty Total Uncertainty:

Magnetic Field measurement The B field azimuthal variation at the center of the storage region.  1.45 T The B field averaged over azimuth.

Magnetic Field Measurement Systematic Uncertainties for the ω p Analysis. Source of Errors Size [ppm] Absolute Calibration of Standard Probe Calibration of Trolley Probe Trolley Measurements of B-field Interpolation with Fixed Probes Uncertainty from Muon Distribution Others Total

Computation of a μ : Analyses of ω a and ω p are Separate and Independent (“Blind Analysis”). When Ready, only then, Offsets are Removed and a μ is Computed.

Computation of a μ : Data of 2001: a μ (exp)= (8)(3)× (0.7 ppm) W.L. et al., PRL 82, 711 (1999)

Average of a μ : Exp. World Average: a μ (exp)= (6)× (0.5 ppm) a μ (exp)- a μ (SM) = 27 (10)×10 -10, 2.7σ, based on e + e - data a μ (exp)- a μ (SM) = 12 (9) ×10 -10, 1.4σ, based on  -data CPT?

G.B. et al., hep-ex/ , PRL in Press

Recent KLOE Results

a µ (had, LBL) = +8.6(3.5)  Large N QCD+Chiral a µ (had, LBL) = +13.6(2.5)  Melnikov + Vainshtein a µ (had, LBL) = +11.1(1.7)  Dubnicka et al a µ (had, LBL) = +9.2(3.0)  T+Ynd. a µ (had, LBL) = +11.0(2.0)  W. Marciano, prelim. Use +12.0(3.5)  WM a µ (QED) = (0.04)(0.1)  Recent Kinoshita Update Recent Developments in Theory

a µ (had,1) = 696.3(6.2)(3.6)× DEHZ a µ (had,1) = 696.2(5.7)(2.4)× HMNT a µ (had,1) = (8.6) × GJ a µ (had,1) = 692.4(5.9)(2.4)× HMNT inclusive a µ (had,1) = 693.5(5.0)(1.0)× TY Use = (6.2)(3.6)× WM a µ (SM) = (7.2) VP (3.5) LBL (0.3) EW,QED × a µ (Exp) = (5.8)×  a µ = a µ (Exp) - a µ (SM) = 23.9 (9.9)× or 2.4  deviation Recent Developments in had1

Beyond standard model, e.g. SUSY W. Marciano, J. Phys. G29 (2003) 225

SUSY: EDM, MDM and Transition Moments are in Same Matrix

Current Status and Future Prospects

SUSY Dark Matter Following Ellis, Olive, Santoso, Spanos. Plot by K. Olive

SUSY Dark Matter Following Ellis, Olive, Santoso, Spanos. Plot by K. Olive

SUSY Dark Matter Following Ellis, Olive, Santoso, Spanos. Plot by K. Olive Upper Limits on SUSY Mass Scales are set by Muon g-2

Upgrade for Future Run: Goal 0.25 ppm Larger Acceptance Beamline. New Inflector with Open Ends. Larger Segmentation Detectors. Run for 25 Weeks w/ 2.6 times the Rate or for 16 Weeks at 4 times the Rate.

Experimental measurement of the anomalous magnetic moment of negative muons to 0.7 ppm. Combined with the positive muon result: 0.5ppm More data from the theory front are/will be analyzed: Novosibirsk, KLOE, BaBar, Belle. The g-2 collaboration is working towards reducing the experimental error by a factor of 2. Prospects and Summary