Date of download: 6/1/2016 From: Syndromes of Glucocorticoid Resistance Ann Intern Med. 1993;119(11):1113-1124. doi:10.7326/0003-4819-119-11-199312010-00009.

Slides:



Advertisements
Similar presentations
RNA Ribonucleic Acid. Structure of RNA  Single stranded  Ribose Sugar  5 carbon sugar  Phosphate group  Adenine, Uracil, Cytosine, Guanine.
Advertisements

1 The Interrupted Gene. Ex Biochem c3-interrupted gene Introduction Figure 3.1.
Fea- ture Num- ber Feature NameFeature description 1 Average number of exons Average number of exons in the transcripts of a gene where indel is located.
Chapter 3 The Interrupted Gene.
Date of download: 5/31/2016 From: Medications for Risk Reduction of Primary Breast Cancer in Women: U.S. Preventive Services Task Force Recommendation.
Colinearity of Gene and Protein
Date of download: 6/22/2016 Copyright © 2016 American Medical Association. All rights reserved. From: Identification of a Novel TP53 Cancer Susceptibility.
Date of download: 6/23/2016 From: Glucocorticoid Therapy for Immune-Mediated Diseases: Basic and Clinical Correlates Ann Intern Med. 1993;119(12):
Date of download: 7/7/2016 From: The Pathophysiologic Roles of Interleukin-6 in Human Disease Ann Intern Med. 1998;128(2): doi: /
Genetic Code and Interrupted Gene Chapter 4. Genetic Code and Interrupted Gene Aala A. Abulfaraj.
Copyright © 2016 McGraw-Hill Education. All rights reserved.
Volume 1, Issue 4, Pages (March 1998)
From: Three Novel Pax6 Alleles in the Mouse Leading to the Same Small-Eye Phenotype Caused by Different Consequences at Target Promoters Invest. Ophthalmol.
From: Expression of PRPF31 mRNA in Patients with Autosomal Dominant Retinitis Pigmentosa: A Molecular Clue for Incomplete Penetrance? Invest. Ophthalmol.
Epidermolysis Bullosa: Novel and De Novo Premature Termination Codon and Deletion Mutations in the Plectin Gene Predict Late-Onset Muscular Dystrophy 
Identification of EpCAM as the Gene for Congenital Tufting Enteropathy
Robert H. Oakley, PhD, John A. Cidlowski, PhD 
A spliceosomal intron of mitochondrial DNA origin
Deficiency of the ADP-Forming Succinyl-CoA Synthase Activity Is Associated with Encephalomyopathy and Mitochondrial DNA Depletion  Orly Elpeleg, Chaya.
Chapter 4 The Interrupted Gene.
Cohen Syndrome Is Caused by Mutations in a Novel Gene, COH1, Encoding a Transmembrane Protein with a Presumed Role in Vesicle-Mediated Sorting and Intracellular.
A novel mutation of HFE explains the classical phenotype of genetic hemochromatosis in a C282Y heterozygote  Daniel F. Wallace, James S. Dooley, Ann P.
Syndromic Short Stature in Patients with a Germline Mutation in the LIM Homeobox LHX4  Kalotina Machinis, Jacques Pantel, Irène Netchine, Juliane Léger,
Aoi Nakano, Hajime Nakano, Sal LaForgia, Leena Pulkkinen, Jouni Uitto 
Volume 54, Issue 3, Pages (September 1998)
Volume 54, Issue 3, Pages (September 1998)
Pathogenicity Evaluation of BRCA1 and BRCA2 Unclassified Variants Identified in Portuguese Breast/Ovarian Cancer Families  Catarina Santos, Ana Peixoto,
Mutations in a Novel Gene with Transmembrane Domains Underlie Usher Syndrome Type 3  Tarja Joensuu, Riikka Hämäläinen, Bo Yuan, Cheryl Johnson, Saara.
A Gene Mutated in Nephronophthisis and Retinitis Pigmentosa Encodes a Novel Protein, Nephroretinin, Conserved in Evolution  Edgar Otto, Julia Hoefele,
Analysis of an exon 1 polymorphism of the B2 bradykinin receptor gene and its transcript in normal subjects and patients with C1 inhibitor deficiency 
Epidermolysis Bullosa: Novel and De Novo Premature Termination Codon and Deletion Mutations in the Plectin Gene Predict Late-Onset Muscular Dystrophy 
Double Heterozygosity for a RET Substitution Interfering with Splicing and an EDNRB Missense Mutation in Hirschsprung Disease  Alberto Auricchio, Paola.
Molecular Characterization of WFS1 in Patients with Wolfram Syndrome
Analysis of Rare APC Variants at the mRNA Level
Volume 117, Issue 3, Pages (September 1999)
Autosomal-Recessive Early-Onset Retinitis Pigmentosa Caused by a Mutation in PDE6G, the Gene Encoding the Gamma Subunit of Rod cGMP Phosphodiesterase 
Peter Ianakiev, Michael W
Volume 1, Issue 4, Pages (March 1998)
Splice Site and Deletion Mutations in Keratin (KRT1 and KRT10) Genes: Unusual Phenotypic Alterations in Scandinavian Patients with Epidermolytic Hyperkeratosis 
Thomas C. Hart, Yingze Zhang, Michael C. Gorry, P
Laminin-5 Mutational Analysis in an Italian Cohort of Patients with Junctional Epidermolysis Bullosa  Patrizia Posteraro, Naomi De Luca, Guerrino Meneguzzi,
A Homozygous Nonsense Mutation in Type XVII Collagen Gene (COL17A1) Uncovers an Alternatively Spliced mRNA Accounting for an Unusually Mild Form of Non-Herlitz.
A Presenilin-1 Truncating Mutation Is Present in Two Cases with Autopsy-Confirmed Early-Onset Alzheimer Disease  Carolyn Tysoe, Joanne Whittaker, John.
Mutation of Solute Carrier SLC16A12 Associates with a Syndrome Combining Juvenile Cataract with Microcornea and Renal Glucosuria  Barbara Kloeckener-Gruissem,
Volume 89, Issue 7, Pages (June 1997)
Germline Epigenetic Silencing of the Tumor Suppressor Gene PTPRJ in Early-Onset Familial Colorectal Cancer  Ramprasath Venkatachalam  Gastroenterology 
A Novel Point Mutation Affecting the Tyrosine Kinase Domain of the TRKA Gene in a Family with Congenital Insensitivity to Pain with Anhidrosis  Shinichi.
Neil V. Whittock, Gabrielle H. S. Ashton, Patricia J. C
CC2D2A, Encoding A Coiled-Coil and C2 Domain Protein, Causes Autosomal- Recessive Mental Retardation with Retinitis Pigmentosa  Abdul Noor, Christian Windpassinger,
A Mutation in the Variable Repeat Region of the Aggrecan Gene (AGC1) Causes a Form of Spondyloepiphyseal Dysplasia Associated with Severe, Premature.
Olivier Rosmorduc, Raoul Poupon  Gastroenterology 
Dominique J. Verlaan, Adrian M. Siegel, Guy A. Rouleau 
Emmanuelle Bitoun, Stéphane Chavanas, Alan D
Opitz G/BBB Syndrome in Xp22: Mutations in the MID1 Gene Cluster in the Carboxy- Terminal Domain  Karin Gaudenz, Erich Roessler, Nandita Quaderi, Brunella.
Compound Heterozygosity for a Recessive Glycine Substitution and a Splice Site Mutation in the COL7A1 Gene Causes an Unusually Mild Form of Localized.
Compound Heterozygosity for Novel Splice Site Mutations in the BPAG2/COL17A1 Gene Underlies Generalized Atrophic Benign Epidermolysis Bullosa  Leena Pulkkinen,
Volume 130, Issue 1, Pages (January 2006)
Volume 57, Issue 3, Pages (March 2000)
Figure 1 Pedigree and genetic findings
Volume 57, Issue 6, Pages (June 2000)
Neil V. Whittock, Frances J. Smith, W.H. Irwin McLean 
Arun Kumar, Satish C. Girimaji, Mahesh R. Duvvari, Susan H. Blanton 
Two Exon-Skipping Mutations as the Molecular Basis of Succinic Semialdehyde Dehydrogenase Deficiency (4-Hydroxybutyric Aciduria)  Ken L. Chambliss, Debra.
The Tumor-Necrosis-Factor Receptor–Associated Periodic Syndrome: New Mutations in TNFRSF1A, Ancestral Origins, Genotype-Phenotype Studies, and Evidence.
Epigenetic Allele Silencing Unveils Recessive RYR1 Mutations in Core Myopathies  Haiyan Zhou, Martin Brockington, Heinz Jungbluth, David Monk, Philip Stanier,
Cohen Syndrome Is Caused by Mutations in a Novel Gene, COH1, Encoding a Transmembrane Protein with a Presumed Role in Vesicle-Mediated Sorting and Intracellular.
Exon Skipping in IVD RNA Processing in Isovaleric Acidemia Caused by Point Mutations in the Coding Region of the IVD Gene  Jerry Vockley, Peter K. Rogan,
Identification of a New Splice Form of the EDA1 Gene Permits Detection of Nearly All X- Linked Hypohidrotic Ectodermal Dysplasia Mutations  Alex W. Monreal,
Identification of Novel pro-α2(IX) Collagen Gene Mutations in Two Families with Distinctive Oligo-Epiphyseal Forms of Multiple Epiphyseal Dysplasia  Paul.
A novel Arg615Ser mutation of androgen receptor DNA-binding domain in three 46,XY sisters with complete androgen insensitivity syndrome and bilateral.
Presentation transcript:

Date of download: 6/1/2016 From: Syndromes of Glucocorticoid Resistance Ann Intern Med. 1993;119(11): doi: / Pathophysiologic mechanism of glucocorticoid resistance.The elaborate negative feedback mechanisms responsible for maintaining glucocorticoid homeostasis compensate for the insensitivity of tissues to glucocorticoids by resetting the hypothalamic-pituitary-adrenal axis at a higher level. Thus, corticotropin-releasing hormone (CRH), adrenocorticotropin (ACTH), and cortisol secretion are increased. The compensatory increase in ACTH production causes increased secretion of glucocorticoid precursors with mineralocorticoid activity (DOC, deoxycorticosterone; B, corticosterone) and increased secretion of several adrenal androgens. Figure Legend: Copyright © American College of Physicians. All rights reserved.American College of Physicians

Date of download: 6/1/2016 From: Syndromes of Glucocorticoid Resistance Ann Intern Med. 1993;119(11): doi: / Genomic and cDNA and protein structure of the human glucocorticoid receptor, its functional domains, and its homologies to other steroid and sterol hormone receptors.[64][65][66]Panel A.Panel B.Panel C.23indicates the position of the pathogenetic mutation in the first kindred from the National Institutes of Health (NIH) ; indicates the 4-basepair deletion and conservative mutation in the second NIH family ; and the black arrowhead indicates the pathogenetic mutation in the family reported by McDermott and colleagues. The gene consists of 10 exons of variable lengths numbered 1 to 8, and 9 and 9. Exon 2 codes for the amino terminal domain; exons 3 and 4 code for the DNA-binding domain; and exons 5 to 9 code for the ligand-binding domain. The steroid-binding glucocorticoid receptor is glucocorticoid receptor (GR ). Glucocorticoid receptor (GR ) is produced by alternative splicing and does not bind glucocorticoids, and its functional importance is obscure. The three main domains of the human glucocorticoid receptor are represented in a linear model, as originally defined. Subsequent in vitro mutagenesis studies have assigned these and other functions to various regions of the receptor protein, as indicated underneath the schematic representation of the receptor. Numbers correspond to amino acids in the primary sequence of the receptor. HSP = heat-shock protein; NLS = nuclear localization sequences. Homologies of the five other classes of steroid and sterol receptors to the glucocorticoid receptor expressed as percent identity in primary sequence (AR = androgen receptor; ER = estrogen receptor; MR = mineralocorticoid receptor; PR = progesterone receptor; and VDR = 1,25[OH] vitamin D receptor). Figure Legend: Copyright © American College of Physicians. All rights reserved.American College of Physicians

Date of download: 6/1/2016 From: Syndromes of Glucocorticoid Resistance Ann Intern Med. 1993;119(11): doi: / Molecular studies of the glucocorticoid receptor in families 1 and 2 studied at the National Institutes of Health.Left, Panel A.Left, Panel B.[64]Right, Panel A.Right, Panel B.Right, Panel C.Right, Panel D.[65]Family 1 pedigree showing autosomal codominant transmission of the glucocorticoid resistance (black symbol indicates symptomatic; half-black symbol indicates biochemically affected only). Nucleotide sequence of the glucocorticoid receptor cDNA from the propositus and his asymptomatic but biochemically affected son. The propositus has T in place of A at nucleotide 2054, changing the aspartate codon GAC normally present at position 641 to the valine codon, GTC. Both A and T are present in the son's sequence, suggesting heterozygosity. The cDNA sequence of the asymptomatic but biochemically affected brother was identical to that of the son. From Hurley and colleagues ; reproduced with permission. Family 2 pedigree showing autosomal-dominant segregation of patients with glucocorticoid resistance (black symbols, affected; white symbols, unaffected). Sequences of the glucocorticoid receptor alleles at the 3-donor splice junction of exon 6 in the proposita and her glucocorticoid-resistant brothers. The boxed nucleotides depict the 4-basepair sequence deleted in one allele. The arrow on the right indicates the exon-intron boundary in the normal allele. The autoradiogram shows the sequence of the normal and the affected allele: the 4-basepair deletion in one allele, including the last bases of the exon and the first nucleotides of the intron, results in double bands. Nucleotide sequences of glucocorticoid receptor-exon 2 genomic DNA of the proposita and her affected brothers. On the left side, the proposita and one of her affected brothers were heterozygous for a mutation at codon 363 (cDNA position 1220) with a guanine (G) replacing the wild-type adenine (A) in one allele. On the right side, the second affected brother was homozygous for the wild-type sequence. Analysis of glucocorticoid receptor gene transcripts by direct sequencing of PCR-amplified cDNA obtained by reverse transcription of total RNA. On the left side, analysis of the proposita's cDNA showed only the sequence bearing G at position 1220, whereas transcripts with the wild-type sequence were not detectable. The base substitution results in a conservative amino acid substitution from asparagine to serine. On the right side, in contrast, the second affected brother had only the wild-type sequence. From Karl and colleagues ; reproduced with permission. Figure Legend: Copyright © American College of Physicians. All rights reserved.American College of Physicians