DIGITAL DESIGN THIRD EDITION M. MORRIS MANO

Slides:



Advertisements
Similar presentations
Data Representation COE 202 Digital Logic Design Dr. Aiman El-Maleh
Advertisements

Princess Sumaya Univ. Computer Engineering Dept. د. بســام كحـالــه Dr. Bassam Kahhaleh.
A digital system is a system that manipulates discrete elements of information represented internally in binary form. Digital computers –general purposes.
Chapter 1 Binary Systems 1-1. Digital Systems
Digital Fundamentals Floyd Chapter 2 Tenth Edition
VIT UNIVERSITY1 ECE 103 DIGITAL LOGIC DESIGN CHAPTER I NUMBER SYSTEMS AND CODES Reference: M. Morris Mano & Michael D. Ciletti, "Digital Design", Fourth.
Digital Fundamentals Floyd Chapter 2 Tenth Edition
S. Barua – CPSC 240 CHAPTER 2 BITS, DATA TYPES, & OPERATIONS Topics to be covered are Number systems.
1 Lecture 2: Number Systems Binary numbers Base conversion Arithmetic Number systems  Sign and magnitude  Ones-complement  Twos-complement Binary-coded.
1.6 Signed Binary Numbers.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Fundamentals Tenth Edition Floyd.
Programmable Logic Controllers
Simple Data Type Representation and conversion of numbers
ACOE1611 Data Representation and Numbering Systems Dr. Costas Kyriacou and Dr. Konstantinos Tatas.
Computers Organization & Assembly Language
EKT 121 / 4 ELEKTRONIK DIGIT 1 CHAPTER 1 : INTRODUCTION.
Digital Design: From Gates to Intelligent Machines
1 Digital Technology and Computer Fundamentals Chapter 1 Data Representation and Numbering Systems.
1 Digital Systems and Binary Numbers EE 208 – Logic Design Chapter 1 Sohaib Majzoub.
1.11, 1.12, 1.13, 1.14, 1.18, 1.20, 1.23, 1.24, 1.25, 1.32, 1.33.
CHAPTER 1 INTRODUCTION NUMBER SYSTEMS AND CONVERSION.
Logic Design Dr. Yosry A. Azzam. Binary systems Chapter 1.
مدار منطقي مظفر بگ محمدي Course Structure & Grading Homework: 25% Midterm: 30% Final:50% There is 5% extra! ( =105!) Textbook:
Number systems & Binary codes MODULE 1 Digital Logic Design Ch1-2 Outline of Chapter 1  1.1 Digital Systems  1.2 Binary Numbers  1.3 Number-base Conversions.
CHAPTER 1 INTRODUCTION NUMBER SYSTEMS AND CONVERSION
CE1111 :Digital Logic Design lecture 01 Introduction Dr. Atef Ali Ibrahim.
Number Systems and Codes. CS2100 Number Systems and Codes 2 NUMBER SYSTEMS & CODES Information Representations Number Systems Base Conversion Negative.
1 EENG 2710 Chapter 1 Number Systems and Codes. 2 Chapter 1 Homework 1.1c, 1.2c, 1.3c, 1.4e, 1.5e, 1.6c, 1.7e, 1.8a, 1.9a, 1.10b, 1.13a, 1.19.
ECE 301 – Digital Electronics Unsigned and Signed Numbers, Binary Arithmetic of Signed Numbers, and Binary Codes (Lecture #2)
Computer Math CPS120 Introduction to Computer Science Lecture 4.
AEEE2031 Data Representation and Numbering Systems.
Binary01.ppt Decimal Decimal: Base 10 means 10 Unique numerical digits ,00010,000 Weight Positions 3,
Codes Octal Power Hexadecimal ASCII BCD Code
Introduction to Microprocessors Chapter 2. Decimal or Base 10 Numbers  Have ten different digits (0-9)  It is a weighted number system. Each position.
Digital Systems Digital Logic and Design Dr. Musab Bassam Zghool Text Book: Mano Morris M. “ Digital Logic And Computer Design ”
WEEK #2 NUMBER SYSTEMS, OPERATION & CODES (PART 1)
Number Systems by Dr. Amin Danial Asham. References  Programmable Controllers- Theory and Implementation, 2nd Edition, L.A. Bryan and E.A. Bryan.
Digital Fundamentals Tenth Edition Floyd Chapter 2 © 2008 Pearson Education.
MECH1500 Chapter 3.
Chapter 1: Binary Systems
Chapter 1 Representing Data in a Computer. 1.1 Binary and Hexadecimal Numbers.
Exercise 1.2 (Chapter 1) Prepared by Dr. Lamiaa Elshenawy
Digital Logic Design Lab 1,2 By Nora Alaqeel.
Computer Math CPS120 Introduction to Computer Science Lecture 7.
Exercises 1.2 (Chapter 1) Prepared by Dr. Lamiaa Elshenawy
Number Systems. The position of each digit in a weighted number system is assigned a weight based on the base or radix of the system. The radix of decimal.
Chapter 6. Digital Arithmetic: Operations and Circuits
11001 / 101, / ) Perform subtraction on the given unsigned binary numbers using the 2's complement of the subtrahend. Where the result.
Programmable Logic Controller
Some basic concepts underlying computer archi­tecture
Data Representation COE 308 Computer Architecture
Number Systems and Codes
Data Representation ICS 233
Lec 3: Data Representation
Data Representation.
Lecture No. 4 Number Systems
CHAPTER 1 INTRODUCTION NUMBER SYSTEMS AND CONVERSION
11001 / 101 , / ) Perform subtraction on the given unsigned binary numbers using the 2's complement of the subtrahend. Where the.
CHAPTER 1 : INTRODUCTION
Digital Systems and Binary Numbers
Number Systems.
TAO1221 COMPUTER ARCHITECTURE AND ORGANIZATION LAB 6
Number Systems and Codes
Digital Electronics & Logic Design
Digital Logic Design (ECEg3141) 2. Number systems, operations & codes 1.
2’s Complement form 1’s complement form 2’s complement form
ECE 331 – Digital System Design
Data Representation COE 308 Computer Architecture
Presentation transcript:

DIGITAL DESIGN THIRD EDITION M. MORRIS MANO CHAPTER 1 : BINARY SYSTEMS PROBLEMS

1. 1-) List the octal and the hexadecimal numbers from 16 to 32 1.1-) List the octal and the hexadecimal numbers from 16 to 32. Using A and B for the last two digits, list the numbers from 10 to 26 in base 12 . Octal : 16 = 8¹ x 2 + 8º x 0 => (16)10 = (20)8 32 = 8¹ x 4 + 8º x 0 => (32)10 = (40)8 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40

Hexadecimal : Base-12 : 16 = 16¹ x 1 + 16º x 0 => (16)10 = (10)16 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B , 1C, 1D, 1E, 1F, 20 Base-12 : 10 = 12º x A => (10)10 = (A)12 26 = 12¹ x 2 + 12º x 2 => (26)10 = (22)12 A, B, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 20, 21, 22

1.2-) What is the exact number of bytes in a system that contains (a) 32K byte, (b)64M bytes, and (c)6.4G byte ? (a) 32K byte: 1K = 2¹º = 1,024 32K = 32 x 2¹º = 32 x 1,024 = 32,768 32K byte = 32,768 byte

(b) 64M byte: (c) 6.4G byte: 1M = 2²º = 1,048,576 64M = 64 x 2²º = 64 x 1,048,576 = 67,108,864 64M byte = 67,108,864 byte (c) 6.4G byte: 1G = 2³º = 1,073,741,824 6.4G = 6.4 x 2³º = 6.4 x 1,073,741,824 = 6,871,747,674 6.4G byte = 6,871,747,674 byte

1.3-) What is the largest binary number that can be expressed with 12 bits? What is the equivalent decimal and hexadecimal ? Binary: (111111111111)2 Decimal: (111111111111)2 = 1x 2º+ 1 x 2¹ + 1 x 2² +…..+ 1 x 2¹¹ + 1 x 2¹² (111111111111)2 = 4,095 Hexadecimal: (1111 1111 1111)2 F F F = (FFF)16

1.4-) Convert the following numbers with the indicated bases to decimal : (4310)5 , and (198)12 . (4310)5 = 0 x 5º + 1 x 5¹ + 3 x 5² + 4 x 5³ = 0 + 5 + 75 + 500 (4310)5 = 580 (198)12 = 8 x 12º + 9 x 12¹ + 1 x 12² = 8 + 108 + 144 (198)12 = 260

1.5-) Determine the base of the numbers in each case for the following operations to be correct : (a) 14/2 = 5 ; (b) 54/4 = 13 ; (c) 24+17 = 40 . (a) (14)a / (2)a = (5)a (4 x aº + 1 x a¹) / (2 x aº) = 5 x aº (4 + a) / 2 = 5 4 + a = 10 a = 6

(b) (54)b / (4)b = (13)b (4 x bº + 5 x b¹) / (4 x bº) = 3 x bº + 1 x b¹ (4 + 5b) / 4 = 3 + b 4 + 5b = 12 + 4b b = 8 (c) (24)c + (17)c = (40)c (4 x cº + 2 x c¹) + (7 x cº + 1 x c¹) = 4 x c¹ 4 + 2c + 7 + c = 4c c = 11

1.6-) The solution to the quadratic equation x² - 11x + 22 = 0 is x=3 and x=6. What is the base of the numbers? x² - 11x + 22 = (x – 3) . (x – 6) x² - 11x + 22 = x² - (6 + 3)x + (6.3) (11)a = (6)a + (3)a 1 + a = 6 + 3 a = 8

1. 7-) Express the following numbers in decimal : (10110. 0101)2 , (16 ( 1 0 1 1 0 . 0 1 0 1 )2 4 3 2 1 0 -1 -2 -3 -4 (10110.0101)2 = 2 + 4 + 16 + (1/4) + (1/16) (10110.0101)2 = 22.3125 = 2¹ + 2² + (2^4) +( 2^-2) + (2^-4)

( 1 6 . 5 )16 1 0 -1 (16.5)16 = 6 + 16 + (5/16) (16.5)16 = 22.3125 ( 2 6 . 2 4 )8 1 0 -1 -2 (26.24)8 = 6 + 16 + (2/8) + (4/64) (26.24)8 = 22.3125 = 6 x 16º + 1 x 16¹ + 5 x (16^-1) = 6 x 8º + 2 x 8¹ + 2 x (8^-1) + 4 x (8^-2)

1.8-) Convert the following binary numbers to hexadecimal and to decimal : (a) 1.11010 , (b) 1110.10 . Explain why the decimal answer in (b) is 8 times that of (a) . ( 1 . 1101 0 )2 = ( 1 . D )16 = 1 x 16º + D x (16^-1) 1 D 0 0 -1

1.9-) Convert the hexadecimal number 68BE to binary and then from binary convert it to octal . Binary form: (0110 1000 1011 1110)2=(0110100010111110)2 6 8 B E Octal form: (0 110 100 010 111 110)2 0 6 4 2 7 6 =(064276)8

1.10-) Convert the decimal number 345 to binary in two ways : Convert directly to binary; Convert first to hexadecimal, then from hexadecimal to binary. Which method is faster ?

Method 1: (345)10 Number Divided by 2 Remainder 345 345/2=172 1 172 172/2=86 86 86/2=43 43 43/2=21 21 21/2=10 10 10/2=5 5 5/2=2 2 2/2=1 (345)10

Method 2: (345)10=(159)16 (1 101 1001)2 Number Divided by 16 Remainder 345/16=21 9 21 21/16=1 5 (345)10=(159)16 (1 101 1001)2

1. 11-) Do the following conversion problems : (a) Convert decimal 34 1.11-) Do the following conversion problems : (a) Convert decimal 34.4375 to binary . (b) Calculate the binary equivalent of 1/3 out to 8 places. Then convert from binary to decimal. How close is the result to 1/3 ? (c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal . Is the answer the same ?

34.4375 34 0.4375 34:2=17 r=0 17:2=8 r=1 8:2=4 r=0 4:2=2 r=0 2:2=1 r=0 34=(100010)2 0.4375*2=0.875 r=0 0.875*2=1.75 r=1 0.75*2=1.5 r=1 0.5*2=1.0 r=1 0*2=0 r=0 0.4375=(0.01110)2 34.4375=(100010.01110)2

(b) 1/3=0.3333… 0.33333*2=0.66666 r=0 0.66666*2=1.33332 r=1 0.33332*2=0.66664 r=0 0.66664*2=1.33328 r=1 . . . 0.3333…=(0.010101….)= 0+ ¼ + 0 + 1/8 + 0 + 1/32 +… =~0.33333…

(c) 0.010101010…=0.0101 0101 0101 (0.555..)16=5/16 +5/256 +5/4096 +…=~0.33203

1.12-) Add and multiply the following numbers without converting them to decimal. (a) Binary numbers 1011 and 101 . (b) Hexadecimal numbers 2E and 34 . (a) 1011 (11) 1011(11) 101 (5) 101(5) +__________ x_____ 10000(16) 1011 0000 + 1011 _________ 110111 (55)

(b) 2E (46) 2E 34 (52) 34 +____ x____ 62 (98) B8 8A +____ 958(2392)

1.13-) Perform the following division in binary : 1011111 ÷ 101 . (1011111)2=95 (101)2=5 95/5=19 (10011)2 1011111 101 101 10011 000111 101 0101 101 0000

1.14-) Find the 9’s- and the 10’s-complement of the following decimal numbers : (a) 98127634 (b) 72049900 (c) 10000000 (d) 00000000 . 9’s comlements : 99999999-98127634=01872365 99999999-72049900=27950099 99999999-10000000=89999999 99999999-0000000=99999999

10’s complements (a)100000000- 98127634= 01872366 (b)100000000-72049900=27950100 (c)100000000-10000000=90000000 (d)100000000-0000000=00000000

1. 15-) (a) Find the 16’s-complement of AF3B 1.15-) (a) Find the 16’s-complement of AF3B . (b) Convert AF3B to binary . (c) Find the 2’s-complement of the result in (b) (d) Convert the answer in (c) to hexadecimal and compare with the answer in (a) 16^5-AF3B=50C5 (AF3B)16=1010 1111 0011 1011 (c)1010111100111011 0101000011000101 (d)0101 0000 1100 0101= 50C5

1.16-) Obtain the 1’s and 2’S complements of the following binary numbers : (a)11101010 (b)01111110 (c)00000001 (d)10000000 (e)00000000 1’s complements: (a) 00010101 (b)10000001 (c)11111110 (d)01111111 (e)11111111 2’s complement : (a) 00010110 (b)10000010 (c)11111111 (d)10000000 (e)00000000

1.17-) Perform subtraction on the following unsigned numbers using the 2’s-complement of the subtrahend. Where the result shoud be negative, 10’s complement it and affix a minus sign. Verify your answers . (a) 7188-3049 (b)150-2100 (c)2997-7992 (d)1321-375

(a)7188+6951=4139 One carry out so answer is correct. (b)150+7900=8050 correct answer=-1950 (c)2997+2008=5005 correct answer=-4995 (d)1321+9625=0946 One carry out so answer is correct.

1.18-) Perform subtraction on the following unsigned binary numbers using the 2’s-complement of the subtrahend. Where the result should be negative, 2’s complement it and affix a minus sign . (a)11011-11001 (b)110100-10101 (c)1011-110000 (d)101010-101011

11011+00111=00010(27-25=2) 110100+01011=011111(52-21=31) (c)1011+010000=011011 -100101(11-48=-37) (d)101010+010101=111111-000001(42-43=-1)

1.19-) The following decimal numbers are shown in sign- magnitude form : +9826 and +801. Convert them to signed 10’s-complement form and perform the following operations : (Note that the sum is +10627 and requires six digits). (a) (+9826)+(+801) (b)(+9826)+(-801) (c)(-9826)+(+801) (d)(-9826)+(-801) 00

009826+00801=010627 (b)009826+999199=09025 (c)990174+000801=990975-09025 (d)990174+999199=989373-10627

1.20-) Convert decimal +61 and +27 to binary using the signed-2’s complement representation and enough digits to accomodate the numbers. Then perform the binary equivalent of (+27) + (- 61) , (- 27) + (+61) and (-27) + (- 61) . Convert the answers back to ecimal and verify that they are correct .

+61=0111101 -61=1000011 +27=0011011 -27=1100101 (a)27+(-61)=0011011+1000011=1011110 (b)-27+(+61)=1100101+0111101=0100010 (c)-27+(-61)= 1100101+1000011=0101000(overflow) 11100101+11000011=10101000

1. 21-) Convert decimal 9126 to both BCD and ASCII codes 1.21-) Convert decimal 9126 to both BCD and ASCII codes. For ASCII, an odd parity bit is to be appended at the left . BCD: 1001 0001 0010 0110 ASCII: 10111001 00110001 00110010 10110110

1.22-) Represent the unsigned decimal numbers 965 and 672 in BCD and then show the steps necessary to form their sum . 965= 1001 0110 0101 672= 0110 0111 0010 +___ ___ ____ 1 0000 1101 0111 +0110 +0110 +_________________ 0001 0110 0011 0111  (1637)10

1.23-) Formulate a weighted binary code for the decimal digits using weights 6, 3, 1, 1 .

6 3 1 Decimal 2 4(0101) 5 7(1010) 8 9

1.24-) Represent decimal number 6027 in (a) BCD, (b) excess-3 code, and (c) 2421 code .

1. 25-) Find the 9’s complement of 6027 and express it in 2421 code 1.25-) Find the 9’s complement of 6027 and express it in 2421 code. Show that the result is the 1’s complement of the answer to (c) in Problem 1.24 . This demonstrates that the 2421 code is self-complementing . 9’s complement of 6027 is 3972 6027 as 2421 code is  0110 0000 0010 1101 3972 as 2421 code is 0011 1111 1101 0010

2^4 =16 2^5 =32 2^6=64  6 bits are necessary. 1.26-) Assign a binary code in some orderly manner to the 51 playing cards. Use the minimum number of bits. 2^4 =16 2^5 =32 2^6=64  6 bits are necessary.

1.27-) Write the expresion “G. Boole” in ASCII using an eight-bit code. Include the period and the space. Treat the leftmost bit of each character as a parity bit. Each 8-bit code shouls have even parity. G . B O O L E (01000111)(00101110) (01000010) (01101111) (01101111) (01101100) (01100101) 11

1.28-) Decode the following ASCII code : 1001010 1100001 1101110 1100101 0100000 1000100 1101111 1100101 . Jane Doe

1.29-) The following is a string of ASCII characters whose bit patterns have benn converted into hexadecimal for compactness : 4A EF 68 6E 20 C4 EF E5 . Of the 8 bits in each pair of digits, the leftmost is a parity bit. The remaining bits are the ASCII code. 01001010 11101111 01101000 01101110 00100000 11000100 11101111 11100101 J O H N (space) D O E

62 of them are numbers and letters. 32 of them are special characters. 1.30-) How many printing characters are there in ASCII ? How many of them are special characters (not letters or numerals) ? 94 characters 62 of them are numbers and letters. 32 of them are special characters.

1.31-) What bit must be complemented to change an ASCII letter from capital to lowercase, and vice versa ? Cevap: Bir ASCII karakteri büyük harften küçük harfe çevirmek için sağdan 6. bit 0 iken 1 yapılır. Küçükten büyüğe çevrilecekse 1 iken 0 yapılır.

1. 32-) The state of a 12-bit register is 100010010111 1.32-) The state of a 12-bit register is 100010010111 . What is its content if it represents (a) three decimal digits in BCD? (b) three decimal digits in the excess-3 code? (c) three decimal digits in 84-2-1 code? (d) binary number?

Three Decimal Digits in BCD: Three Decimal Digits in Exces-3 Code: 1000 1001 0111 Three Decimal Digits in Exces-3 Code: (8-3) (9-3) (7-3) Three Decimal Digits in the 8-4-2-1 Code: 8 9 7 Binary Code: 100010010111 897 564 897 2^11+2^7+2^4+2^2+2+1=2199

1.33-) List the ASCII code for the 10 decimal digits with an even parity bit in the leftmos position. 00110000 10110001 10110010 00110011 10110100 00110101 00110110 10110111 10111000 00111001

1.34-) Assume a 3-input AND gate with output F and a 3-input OR gate with output G. Inputs are A, B, and C . Show the signals (by means of a timing diagram) of the outputs F and G as functions of three inputs ABC. Use all possible combinations of ABC.

F :  A , B , C F :  A , BX , CX  AX , B , CX  AX , BX , C NOT: X’ler HIGH ya da LOW olabilir