1 COMP 431 Internet Services & Protocols The IP Internet Protocol Jasleen Kaur April 21, 2016.

Slides:



Advertisements
Similar presentations
Discussion Monday ( ). ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier header checksum time to live.
Advertisements

4 IP Address (IPv4)  A unique 32-bit number  Identifies an interface (on a host, on a router, …)  Represented in dotted-quad notation
4: Network Layer4a-1 IP Addressing: introduction r IP address: 32-bit identifier for host, router interface r interface: connection between host, router.
8-1 Last time □ Network layer ♦ Introduction forwarding vs. routing ♦ Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding.
Introduction 1-1 1DT066 Distributed Information System Chapter 4 Network Layer.
Announcement r Recitation tomorrow on Project 2 r Midterm Survey at the end of this class.
Week 5: Internet Protocol Continue to discuss Ethernet and ARP –MTU –Ethernet and ARP packet format IP: Internet Protocol –Datagram format –IPv4 addressing.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
Network Layer4-1 Computer Networking (Datakom) Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing.
N/W Layer Addressing1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes.
Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 1 ECSE-4670: Computer Communication Networks (CCN) Network Layer Shivkumar.
Network Layer Overview and IP
11- IP Network Layer4-1. Network Layer4-2 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection.
Network Layer4-1 IP: Internet Protocol r Datagram format r IPv4 addressing r DHCP: Dynamic Host Configuration Protocol r NAT: Network Address Translation.
IP Addressing: introduction
CSE452:Computer Networks
Network Layer4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side,
IP Address 0 network host 10 network host 110 networkhost 1110 multicast address A B C D class to to
Network Layer4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side,
IP-UDP-RTP Computer Networking (In Chap 3, 4, 7) 건국대학교 인터넷미디어공학부 임 창 훈.
Chapter 4 Queuing, Datagrams, and Addressing
Computer Networks The Network Layer
4: Network Layer4a-1 IP datagram format ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier Internet checksum time.
Adapted from: Computer Networking, Kurose/Ross 1DT066 Distributed Information Systems Chapter 4 Network Layer.
Datagram Networks: Internet Protocol (IPv4)
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
12 – IP, NAT, ICMP, IPv6 Network Layer.
4: Network Layer4a-1 IP addresses: how to get one? Hosts (host portion): r hard-coded by system admin in a file r DHCP: Dynamic Host Configuration Protocol:
1DT066 Distributed Information System Chapter 4 Network Layer.
Network Layer4-1 Chapter 4 Network Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers).
4: Network Layer4a-1 Hierarchical Routing r aggregate routers into regions, “autonomous systems” (AS) r routers in same AS run same routing protocol m.
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012  CPSC.
1 Chapter 4: Network Layer r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Hierarchical routing.
Network Layer 4-1 Chapter 4 Network Layer. Network Layer 4-2 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3.
7-1 Last time □ Wireless link-layer ♦ Introduction Wireless hosts, base stations, wireless links ♦ Characteristics of wireless links Signal strength, interference,
Internet Protocol ECS 152B Ref: slides by J. Kurose and K. Ross.
1 Network Layer Lecture 15 Imran Ahmed University of Management & Technology.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Network Layer4-1 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection RIP, OSPF, BGP IP protocol.
Sharif University of Technology, Kish Island Campus Internet Protocol (IP) by Behzad Akbari.
Transport Layer3-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Datagram networks r no call setup at network layer r routers: no state about end-to-end connections m no network-level concept of “connection”
Network Layer by peterl. forwarding table routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r Understand principles behind network layer services: m Routing (path selection) m dealing with.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
The Internet Network layer
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 19 Omar Meqdadi Department of Computer Science and Software Engineering University.
Network Layer by peterl. forwarding table routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling.
Wide Area Networks and Internet CT1403 Lecture3: Internet Network Layer 1.
Network Layer4-1 Chapter 4 Network Layer All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
IP Fragmentation. Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on rcving side,
IP Internet Protocol. IP TCP UDP ICMPIGMP ARP PPP Ethernet.
CSE 421 Computer Networks. Network Layer 4-2 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside.
Graciela Perera Department of Computer Science and Information Systems Slide 1 of 18 INTRODUCTION NETWORKING CONCEPTS AND ADMINISTRATION CSIS 3723 Graciela.
Introduction to Networks
12 – IP, NAT, ICMP, IPv6 Network Layer.
Chapter 4: Network Layer
Computer Communication Networks
Introduction to Communication Networks
Chapter 4: Network Layer
Chapter 4: Network Layer
IP - Internet Protocol (Based on Kurose & Ross)
CS 457 – Lecture 10 Internetworking and IP
Wide Area Networks and Internet CT1403
Overview The Internet (IP) Protocol Datagram format IP fragmentation
Chapter 4 Network Layer Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April Network Layer.
Network Layer: Control/data plane, addressing, routers
ECSE-4670: Computer Communication Networks (CCN)
Presentation transcript:

1 COMP 431 Internet Services & Protocols The IP Internet Protocol Jasleen Kaur April 21, 2016

2 The Network Layer: Routing & Addressing Outline u Network layer services u Routing algorithms »Least cost path computation algorithms u Hierarchical routing »Connecting networks of networks u IP Internet Protocol »Addressing »IPv6 u Routing on the Internet »Intra-domain routing »Inter-domain routing u Router architecture application transport network link physical network application transport network link physical network link physical network link physical network link physical network link physical network link physical network

3 Routing protocols path selection RIP, OSPF, BGP The Internet Network layer Host and router network layer functions routing table IP protocol addressing conventions IP datagram format packet handling conventions ICMP protocol error reporting router “signaling” Transport layer: TCP, UDP Link layer Physical layer Network layer

4 The Internet Network layer IP datagram format ver length 32 bits data (variable length, typically a TCP segment or UDP datagram) 16-bit identifier Internet checksum time to live 32 bit source IP address head. len type of service flgs fragment offset upper layer 32 bit destination IP address Options (if any) u IP datagrams »The protocol data units at the IP network layer) u (Not to be confused with UDP datagrams) »The protocol data units at the UDP transport layer are also called datagrams

5 IP Addressing Introduction u IP address: 32-bit identifier for host or router interface u Interface: connection between host or router and a physical link »Routers typically have multiple interfaces »Host may have multiple interfaces (typically not) »IP addresses are associated with an interface, not the host or router =

6 IP Addressing Host address v. Network addresses u IP address: »Network part (high order bits) »Host part (low order bits) u What’s a network? »The set of devices that can communicate with each other without an intervening router  The devices attached to the same physical network »From an IP address perspective its:  The set of device interfaces with IP addresses having a common network part Ethernet

7 IP Addressing Host address v. Network addresses u A network is the set of hosts reachable without having to traverse a router »Detach each interface from router or host »Create “islands” of isolated networks Note: single point-to-point link is an (IP) network

8 IP Addressing Class-based addressing u Class A addresses »128 networks »65,536 to 2 24 hosts u Class B addresses »16,384 networks »256 to 65,536 hosts u Class C addresses »2 21 networks »less than 256 hosts u Class D addresses »28-bit multicast addresses »No origin or network information is encoded multicast address net id net id net id (IP addresses through ) host id (IP addresses through ) (IP addresses through ) (IP addresses through )

9 IP Addressing Classless Inter Domain Routing (CIDR) u Class-based addressing »Inefficient use of address space, address space exhaustion »e.g., class B network allocated enough addresses for 64K hosts, even if only 300 hosts in that network u Classless addressing »Network portion of address has an arbitrary length »Address format: a.b.c.d/x, where x is the number of bits in network portion of address; called the network mask  Used only in routing tables, not IP datagram source/destination / 23 Network part Host part

10 IP addresses How are IP addresses assigned? u The network address is assigned by the ISP »Hosts portion only; all hosts share the same network portion u Host address »Static assignment:  Configuration parameter (manually) set during system installation »Dynamic assignment at boot/wake-up time  DHCP: Dynamic Host Configuration Protocol:  Host broadcasts a “DHCP discover” message  DHCP server responds with a “DHCP offer” message  Host requests IP address: “DHCP request” message  DHCP server sends address: “DHCP ack” message DCHP Server

11 ISP's block /20 Organization /23 Organization /23 Organization /23... ….. …. …. Organization /23 IP addresses How are network addresses assigned? u ISPs obtain a block of addresses from ICANN ( Internet Corporation for Assigned Names and Numbers) »ICANN allocates IP address blocks, manages DNS, (used to assign domain names), resolves disputes u ISPs subdivide their block among their customers

A B E Routing IP Datagrams Example IP Datagram misc fields source IP addr dest IP addr data u All routing is based on the IP destination address field in the IP header u IP destination address (and data fields) never change! »Delivery to intermediate hops involves link-layer addresses Dest. Net. next router Nhops / *(default) Routing table in A

A B E Routing IP Datagrams Routing to a local destination misc fields data u An application on A generates an IP datagram addressed to B »The IP layer on A looks up the network address of B... »And determines that B is on same network as A ( ) u A’s link layer sends the IP datagram directly to B inside link-layer frame »B and A are assumed to be connected to the same physical network Dest. Net. next router Nhops / *(default) Routing table in A

A B E Routing IP Datagrams Routing to a remote destination u Host A generates an IP datagram addressed to E »The IP layer on A looks up up network address of E ( ) »A determines that E is NOT on same network as A »A’s routing table shows router as the default for all networks u A’s link layer sends IP datagram to router inside link-layer frame misc fields data Dest. Net. next router Nhops / *(default) Routing table in A

A B E Routing IP Datagrams Routing to a remote destination Routing table in router network router Nhops interface / / / Dest. next u A’s datagram addressed to E arrives at the router »The router looks up network address of E ( ) »E has the same network address as router’s interface »Router is directly attached to the same network ( ) as E u Router’s link layer sends the datagram to inside a link-layer frame via interface »Datagram arrives at misc fields data

16 Routing IP Datagrams NetMasks $ ifconfig eth0 Link encap:Ethernet HWaddr 00:06:5B:F3:34:7F inet addr: Bcast: Mask: inet6 addr: fe80::206:5bff:fef3:347f/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets: errors:0 dropped:0 overruns:0 frame:0 TX packets: errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes: (383.2 MiB) TX bytes: (2.1 GiB) Interrupt:193

17 Hierarchical addressing Route aggregation “Send me anything with addresses beginning /20” / / /23 FlyByNightISP Organization 0 Organization 7 Internet Core Organization 1 ISPsRUs “Send me anything with addresses beginning /16” /23 Organization G G G G u Hierarchical addressing allows efficient specification of routing information by gateway routers 4 billion possible Internet addresses!

18 Hierarchical addressing Specific routes / / /23 FlyByNightISP Organization 0 Organization 7 Organization 1 ISPsRUs “Send me anything with addresses beginning /16 or /23” /23 Organization G G G G “Send me anything with addresses beginning /20” u Q: If Organization 1 moves to ISPsRUs how will Internet core routers choose a route to Organization 1? »A: Use “longest prefix match” on network part of IP destination address Internet Core

19 Longest Prefix Matching Prefix To Match Port/Interface otherwise 3 Destination Address: Examples (given destination IP address, forward to which interface?) Destination Address: ?? Destination Address: ?? Destination Address Range Port/Interface through through through otherwise 3

20 Datagram Routing and Transmission IP datagram encapsulation (Ethernet) u Sending interface adapter encapsulates IP datagram (or other network layer protocol packet) in an Ethernet frame IP header data TCP header user data IP Datagram TCP Segment Link layer addresses (not same as IP addresses) CRC Preamble Destination Address Source Address CRCData 8 bytes6 bytes 46 to 1500 bytes4 bytes 2 bytes Type

21 ver length 32 bits Data (variable length, typically a TCP segment or UDP datagram) Internet checksum time to live 32 bit source IP address head. len type of service protocol type 32 bit destination IP address Options (if any) Datagram Routing and Transmission IP datagram format IP protocol version Header length (bytes) Maximum number of remaining hops (decremented at each router) For fragmentation/ reassembly Total IP datagram length (bytes) Transport layer protocol to receive payload (UDP, TCP) Network layer service requested E.g.: Timestamp, record route taken, specify routing path, etc. 16-bit identifier flgs fragment offset

22 IP Datagrams Fragmentation & Reassembly u Network links have a maximum frame size »Called the maximum transmission unit (MTU) »Different link types, different MTUs u Large IP datagrams must be “fragmented” to link MTU sizes »One IP datagram becomes several IP datagrams as it transits networks »“Fragments” reassembled only at the final destination u All fragments carry the same IP identification number »All fragments (except the last) have the fragment bit set Reassembly... Fragmentation

23 IP Fragmentation and Reassembly Ethernet MTU example ID = x offset = 0 fragment = 0 length = 4000 ID =x offset =0 fragment =1 length =1500 ID =x offset =1480 fragment =1 length =1500 ID =x offset =2960 fragment =0 length =1040 One large IP datagram becomes several smaller IP datagrams Each IP datagram encapsulated in one Ethernet frame u Consider a 3,980 byte message sent in an FDDI frame u The message generates 3 fragments when it transits an Ethernet »How much application data is in each fragment? IP datagram (20 byte IP header + 3,980 byte TCP segment) encapsulated in one FDDI frame