CEPC Interaction Region design and Dynamic Aperture Optimization Yiwei Wang, Yuan Zhang, Dou Wang, Huiping Geng, Xiaohao Cui, Sha Bai, Tianjian Bian, Feng.

Slides:



Advertisements
Similar presentations
Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.
Advertisements

The IR lattice design and optimization of the dynamic aperture for the ring Yiwei Wang, Huiping Geng, Yuan Zhang, Sha Bai, Dou Wang, Tianjian, Jie Gao.
Study and Optimization of Dynamic Aperture for the SuperKEKB LER E.Levichev and P.Piminov, BINP SB RAS, Novosibirsk, Russia.
Nonlinear Dynamic Study of FCC-ee Pavel Piminov, Budker Institute of Nuclear Physics, Novosibirsk, Russia.
E Levichev -- Dynamic Aperture of the SRFF Storage Ring Frontiers of Short Bunches in Storage Rings INFN-LNF, Frascati, 7-8 Nov 2005 DYNAMIC APERTURE OF.
Lattice design for CEPC main ring H. Geng, G. Xu, W. Chou, Y. Guo, N. Wang, Y. Peng, X. Cui, Y. Zhang, T. Yue, Z. Duan, Y. Wang, D. Wang, S. Bai, Q. Qin,
Lattice design for FCC-ee Bastian Haerer (CERN BE-ABP-LAT, Karlsruhe Institute of Technology (KIT)) 1 8 th Gentner Day, 28 October 2015.
Preliminary Result on L*=1.5m CEPC Interaction Region Yiwei Wang, Dou Wang, Sha Bai Yingshun Zhu, Teng Yue CEPC acc. meeting, 5 September 2014.
Design study of CEPC Alternating Magnetic Field Booster Tianjian Bian Jie Gao Michael Koratzinos (CERN) Chuang Zhang Xiaohao Cui Sha bai Dou Wang Yiwei.
CEPC DA due to magnets' error Sha Bai, Dengjie Xiao, Yiwei Wang, Huiping Geng, Dou Wang, Tianjian Bian, Feng Su, Jie Gao The first IHEP-BINP CEPC Accelerator.
Application of Differential Evolution Algorithm in Future Circular Colliders Yuan IHEP, Beijing Demin Zhou, KEK, Ibaraki, Japan.
Choice of L* for FCCee: IR optics and DA A.Bogomyagkov, E.Levichev, P.Piminov Budker Institute of Nuclear Physics Novosibirsk HF2014, IHEP Beijing, 9-12.
CEPC parameter choice and partial double ring design
Interaction region design for the partial double ring scheme
Design study of CEPC Alternating Magnetic Field Booster
100km CEPC parameter and lattice design
The Studies of Dynamic Aperture on CEPC
CEPC parameter optimization and lattice design
Cui Xiaohao, Zhang Chuang,Bian Tianjian January 12,2016
Summary of CEPC pretzel scheme design
Issues in CEPC pretzel and partial double ring scheme design
CEPC pretzel scheme study
Pretzel scheme of CEPC H. Geng, G. Xu, Y. Zhang, Q. Qin, J. Gao, W. Chou, Y. Guo, N. Wang, Y. Peng, X. Cui, T. Yue, Z. Duan, Y. Wang, D. Wang, S. Bai,
Optimization of CEPC Dynamic Aperture
Status of CEPC lattice design
CEPC Partial Double Ring Lattice Design and DA Study
CEPC Partial Double Ring Lattice Design and DA Study
Dynamic Aperture Optimization in CEPC
The new 7BA design of BAPS
DA study for CEPC Main Ring
DA Study for the CEPC Partial Double Ring Scheme
Multi-Objective Optimization with possible application in SuperKEKB(in progress) Y. Zhang, D. Zhou
CEPC partial double ring scheme and crab-waist parameters
CEPC parameter optimization and lattice design
Interaction region design for the partial double ring scheme
CEPC partial double ring scheme and crab-waist parameters
Comparison of the final focus design
CEPC main ring magnets’ error effect on DA and MDI issues
CEPC主环lattice及动力学孔径研究
Progress on DA Optimization with MODE
Lattice design for the CEPC collider ring
DA Optimization/ Beam-Beam Tail Wyw170816/0823-bx0.36
Y Cai and K. Ohmi Summary of WG2 Y Cai and K. Ohmi
CEPC APDR and PDR scheme
CEPC advanced partial double ring scheme
Optics Design of the CEPC Interaction Region
Lattice design for the CEPC collider ring
CEPC parameter optimization and lattice design
CEPC Partial Double Ring Lattice Design and DA Study
Design study of CEPC Alternating Magnetic Field Booster
CEPC Partial Double Ring Lattice Design and DA Study
Sawtooth effect in CEPC PDR
Optimization of partial double ring optics
Update of DA Study for the CEPC Partial Double Ring Scheme
PEPX-type BAPS Lattice Design and Beam Dynamics Optimization
CEPC Partial Double Ring Lattice Design and DA Study
CEPC parameter and DA optimization
Update of Lattice Design for CEPC Main Ring
Sawtooth effect in CEPC APDR
Update of lattice design for CEPC main ring
Update on CEPC pretzel scheme design
Lattice design and dynamic aperture optimization for CEPC main ring
Lattice Design of the Collider Ring toward TDR
Lattice design for CEPC
CEPC parameter optimization and lattice design
Sawtooth effect in CEPC PDR/APDR
Progress on DA Optimization with MODE
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Sha Bai CEPC AP meeting Work summary Sha Bai CEPC AP meeting
CEPC主环lattice及动力学孔径研究
Presentation transcript:

CEPC Interaction Region design and Dynamic Aperture Optimization Yiwei Wang, Yuan Zhang, Dou Wang, Huiping Geng, Xiaohao Cui, Sha Bai, Tianjian Bian, Feng Su, Jie Gao Institute of High Energy Physics (IHEP, Beijing) The first IHEP-BINP CEPC Accelerator Collaboration Workshop IHEP, January 2016 Yiwei Wang12 Jan 20161

Outline Lattice design of the interaction region Optimization of the interaction region nonlinearity Summary Yiwei Wang12 Jan 20162

Yiwei Wang12 Jan Lattice of interaction region IR lattice design with local chromaticity correction with  x*=0.8m,  y*=3mm,  x=6.12nm,  =0.3%, L*=1.5m, 2IPs latest lattice for head-on collision: FFS_3.0mm_v3.0_Nov_2015 L*= 1.5m  y*= 3mm GQD0= -300T/m GQF1= 300T/m -I IPFTCCYCCX MT

Lattice of interaction region Dynamic aperture of whole ring is limited by the strong nonlinearity of IR due to small  y* – An example: DA with only ARC vs. DA with ARC + preliminary IR Optimization of the dynamic aperture – Local correction: optimization of IR nonlinearity – Global correction: with help of ARC (see Yuan Zhang’s talk) W/ ARC ( by Huiping Geng) W/ ARC+IR (FFS_3.0mm_v0_Feb_2015 Yiwei Wang) without radiation damping, error of the magnets, synchrotron motion included Tracking with 3 times of damping time, Coupling factor  =0.003 for emitty  2% (1.5  x, 13.5  y)

Finite length effect of sextupoles Yiwei Wang12 Jan Add additional sextupoles next to the main one* – Compensate the finite length effect (Lsext=0.3m) *A.Bogomyagkov et al. k=1, S1/S2=-0.1

High order chromaticity Yiwei Wang12 Jan FFS_3.0mm_v1.0_Mar_2015 FFS_3.0mm_v2.2_Sep_2015 remove 2 quads in FT # additional sext at 1 st image point* tune phase of sextupoles # * K. Oide, SLAC-PUB-4806, Nov R. Brinkmann, DESY M-90-14, Nov # Yunhai Cai, private communication. K. Oide, SLAC-PUB-4806, Nov 1988.

Tune shift due to energy deviation Yiwei Wang12 Jan High order chromaticity (cont.) v1.0 v2.2 IR only, from IP to the entrance of FFSIR + ARC, periodic solution

High order chromaticity (cont.) Vertical dynamic aperture vs. dp/p From v1.0 -> v2.2: DA increased significantly for large off-momentum 20  y for  2% (green line) – W/O error of the magnets – Synchrotron motion included – Tracking with 3 times of damping time – Coupling factor  =0.003 for  y Yiwei Wang14-15 Sep x0=0.001  x 02-21

High order chromaticity (cont.) Yiwei Wang12 Jan v1.0 v2.2 Dynamic aperture for both planes v2.2: on momentum (20  x, 180  y), off momentum  2% (2.5  x, 20  y)

-I break down and high order dispersion Yiwei Wang12 Jan Many additional sextupoles in IR Idea from linear collider final focus* Six more sextupoles (3,4,5,8,9,10) to correct break down of –I transformation Three more sextupoles (2,6,7) help to correct the second order dispersion and so on -I IP FTCCYCCXMT FFS_3.0mm_v3.0_Nov_2015 *R. Brinkmann, DESY M-90-14, Nov L*=1.5m  y*=3mm

-I break down and high order dispersion (cont.) In practice, dynamic aperture is optimized directly with the additional sextupoles in IR – W/O error of the magnets – Synchrotron motion included – Tracking with ~1 times of damping time – Coupling factor  =0.003 for  y – Downhill simplex algorithm used* 19 points of dp/p from -2% to 2% Optimize with initial phases (phasex, phasey)=(0,0),(pi/2, pi/2), (0, pi/2), (pi/2, 0) Yiwei Wang12 Jan *K. Oide, private communication

Yiwei Wang13 Nov I break down and high order dispersion (cont.) +(2,3,4,5) sextupoles -I FFS_3.0mm_v3.0_Nov_2015 L*=1.5m  y*=3mm

Yiwei Wang13 Nov I break down and high order dispersion (cont.) -I FFS_3.0mm_v3.0_Nov_2015 L*=1.5m  y*=3mm +(2,3,4,5,6,7) sextupoles

Yiwei Wang13 Nov I break down and high order dispersion (cont.) -I FFS_3.0mm_v3.0_Nov_2015 L*=1.5m  y*=3mm +(2,3,4,5,6,7,8,9,10) sextupoles

Radiation damping Dynamic aperture is optimized directly with the additional sextupoles in IR – W/O error of the magnets – Synchrotron motion and radiation damping included – Tracking with 1 times of damping time – Coupling factor  =0.003 for  y W/O damping: ~6.5  x  10  y for  2%W/ damping: ~9  x  20  y Yiwei Wang12 Jan

Acknowledge Yunhai Cai, Demin Zhou, Katsunobu Oide, Kazuhito Ohmi, Yingshun Zhu, Ming Xiao, Gang Xu, Qing Qin, Yoshihiro Funakoshi, Yukiyoshi Ohnishi, Hiroshi Sugimoto Thanks for their kind help and beneficial discussions! Yiwei Wang14-15 Sep

Summary To optimize the dynamic aperture of CEPC main ring – Local correction within IR have been tried DA incresed significantly, though some prospects needed to be check. Combine of local and global correction is under going Multi-object optimization is necessary to get a better solution and quick convergence. Yiwei Wang12 Jan

Yiwei Wang12 Jan Thank you for your attention!