Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.

Slides:



Advertisements
Similar presentations
Sci-Fi tracker for IT replacement 1 Lausanne 9. December 2010.
Advertisements

Peter Križan, Ljubljana Peter Križan University of Ljubljana and J. Stefan Institute The HERA-B RICH counter.
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan 1.Introduction 2.Recent.
Performance of MPPC using laser system Photon sensor KEK Niigata university, ILC calorimeter group Sayaka IBA, Hiroaki ONO, Paul.
Mass test of MPPC with a prototype of MEG II liquid xenon detector
MEG II 実験液体キセノンガンマ線検出器 における再構成法の開発 Development of the event reconstruction method for MEG II liquid xenon gamma-ray detector 小川真治、 他 MEG II
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
GLD Calorimeter Status Oct 学術創成会議 S. Uozumi Shinshu University FJPPL meeting held at the end of September. Preparation underway toward the ECAL.
Fast Detectors for Medical and Particle Physics Applications Wilfried Vogel Hamamatsu Photonics France March 8, 2007.
Evaluation of Silicon Photomultiplier Arrays for the GlueX Barrel Calorimeter Carl Zorn Radiation Detector & Medical Imaging Group Jefferson Laboratory,
2 1/March/2015 日本物理学会大70回年次大会@早稲田大学 東大ICEPP 内山雄祐 他 MEG II collaboration.
MPPC Radiation Hardness (gamma-ray & neutron) Satoru Uozumi, Kobe University for Toshinori Ikuno, Hideki Yamazaki, and all the ScECAL group Knowing radiation.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
Daisuke Kaneko, on behalf of the MEG(II) collaboration 26 Aug, Moscow Today and Tomorrow of the MEG experiment.
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
R&D of MPPC for T2K experiment PD07 : Photosensor Workshop /6/28 (Thu) S.Gomi T.Nakaya M.Yokoyama H.Kawamuko ( Kyoto University ) T.Nakadaira.
Study of the Multi-Pixel Photon Counter for ILC calorimeter Satoru Uozumi (Kobe University) Atami Introduction of ILC and MPPC The MPPC performance.
MEG II 実験 液体キセノンガンマ線検出器に用いる 光検出器 MPPC の 実装に向けた最終試験 家城 佳 他 MEG II collaboration + 九大の方々.
T. Sugitate / Hiroshima / PHX031 / Nov.01 The Photon Spectrometer for RHIC and beyond PbWO 4 Crystal Density 8.29 g/cm 3 Radiation length 0.89 cm Moliere.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK)
Study of the MPPC for the GLD Calorimeter readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group May 29 – Jun 4 DESY Introduction.
PID for super Belle (design consideration) K. Inami (Nagoya-u) - Barrel (TOP counter) - Possible configuration - Geometry - Endcap (Aerogel RICH) - Photo.
The DRS2 Chip: A 4.5 GHz Waveform Digitizing Chip for the MEG Experiment Stefan Ritt Paul Scherrer Institute, Switzerland.
Dec. 8th, 2000NOON A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.
MEG II 実験のための 陽電子タイミングカウンター実機建設 Construction of Positron Timing Counter for MEG II experiment 西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 2015年 秋季大会 大阪市立大学(杉本キャンパス)
Study of the MPPC for the GLD Calorimeter readout Satoru Uozumi (Shinshu University) Feb Beijing Introduction Basic performances Future.
R&D status of the Scintillator- strip based ECAL for the ILD Oct LCWS14 Belgrade Satoru Uozumi (KNU) For the CALICE collaboration Scintillator strips.
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group (KNU, Kobe, Niigata, Shinshu, ICEPP.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
Multipixel Geiger mode photo-sensors (MRS APD’s) Yury Kudenko ISS meeting, KEK, 25 January 2006 INR, Moscow.
SiPM for CBM Michael Danilov ITEP(Moscow) Muon Detector and/or Preshower CBM Meeting ITEP
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
R&D works on Liquid Xenon Photon Detector for μ  e γ experiment at PSI Satoshi Mihara ICEPP, Univ. of Tokyo Outline Introduction Prototype R&D works Summary.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Study and Development of the Multi-Pixel Photon Counter for the GLD Calorimeter Satoru Uozumi (Shinshu, Japan) on behalf of the GLD Calorimeter Group Oct-9.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
GSI 9Feb09 NMI3 – Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy, Joint Research Activity (JRA8): MUON-S. Contract:
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
Study of the Radiation Damage of Hamamatsu Silicon Photo Multipliers Wander Baldini Istituto Nazionale di Fisica Nucleare and Universita’ degli Studi di.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
Performance of scintillation pixel detectors with MPPC read-out and digital signal processing Mihael Makek with D. Bosnar, V. Gačić, L. Pavelić, P. Šenjug.
小川真治、 他MEG 第72回年次大会 MEG II 実験液体キセノンガンマ線検出器における取得データサイズ削減手法の開発 Development of the data size reduction method for MEG II liquid.
Focusing Aerogel RICH with SiPM Photodetectors
Liquid Xenon Detector for the MEG Experiment
Simulation results for the upgraded RICH detector in the HADES experiment. Semen Lebedev1,3, Jürgen Friese2, Claudia Höhne1, Tobias Kunz2, Jochen Markert4.
大強度
New Study for SiPMs Performance in High Electric Field Environment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
On behalf of the GECAM group
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
R&D of MPPC for T2K experiment
MPPC for T2K Fine-Grained Detector
MEG II実験 液体キセノン検出器の建設状況
Daisuke Kaneko, ICEPP, Univ. of Tokyo on behalf of MEG collaboration
R&D of MPPC in kyoto M.taguchi.
西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 第73回年次大会(2018年) 東京理科大学(野田キャンパス)
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II

Contents 2  MEG and MEG II  Upgrade of liquid Xe detector  VUV-sensitive MPPC  Signal transmission  MPPC performance tests  Simulated dector performance

MEG: μ  e γ search 3 e+e+ γ μ+μ+ μ+μ+ e+e+ γ New physics prediction Upper limit (MEG): 5.7× MEG II goal: 4× History of μ  e γ upper limits BSM (e.g. SUSY) LFV decay μ  e γ is a good probe for new physics! 52.8 MeV

Signal and background 4 e+e+ γ μ+μ+ Signal Main BG e+e+ γ from μ  e νν from μ  e ννγ or e + e -  γγ Same energy (52.8MeV) Same timing Back to back Energy, position and timing resolution are important! Accidental coincidence +

The MEG experiment 5 μ + beam e+e+ γ Liquid Xe γ -ray detector Liquid Xe γ -ray detector e + drift chamber & timing counter e + drift chamber & timing counter Gradient magnetic field

The MEG experiment 6 μ + beam e+e+ γ 900l liquid Xe large & homogeneous High light yield (~75% of NaI) Fast signal ( τ decay ~45ns) Short radiation length (2.8cm) Liquid Xe γ -ray detector Liquid Xe γ -ray detector Successfully operated in 2009~2013 e + drift chamber & timing counter e + drift chamber & timing counter

Upgrade of the Xe detector 7 Resolution was limited by the non-uniformity of the photon collection efficiency. 12x12mm 2 MPPC × ’’ PMT × 216  Replace the PMTs at the γ incident face to 12x12 mm 2 MPPCs. (CG) Upgrade!

Upgrade of the Xe detector 8 MPPC+PMT PMT Imaging power will be significantly improved.  Better energy & position resolution Imaging power will be significantly improved.  Better energy & position resolution The layout of the PMTs will also change.  less energy leakage, better uniformity

VUV-sensitive MPPC 9 ● Sensitive to VUV-light  Protection coating is removed, VUV-transparent quartz window is used for protection. ● Large area (12x12 mm 2 )  signal tail become long due to large capacitance.  Reduce capacitance by connecting 4 chips in series. We have successfully developed VUV-MPPC in collaboration with Hamamatsu Photonics. K.K. 2.5mm - 50 μ m pitch pixel Hamamatsu S (X) - metal quench resister - 4 independent chips 4-segments 2-segments or

Signal transmission 10 PCB inside chamber outside chamber DAQ (WaveDream) “co-axial like structure” MPPC chips are connected in series on PCB. Co-axial like structure PCB and feed-through.  good shielding, high bandwidth, small crosstalk (<0.3%) feed- through

MPPC performance tests 11  Small sample test in liquid Xe  Mass test in room temperature  Mass test in liquid Xe

MPPC small sample test 12 In liquid Xe LEDMPPC α source ( 241 Am) on wire Several performance tests have been done in 2 litter Xe chamber. Measurement of MPPC properties with LED  Gain, crosstalk, afterpulse etc. α source  PDE, energy resolution example of LED signal 100ns Charge example of charge distribution with LED 0p.e. 1p.e.

MPPC small sample test 13 PDE vs. over voltage Energy resolution vs. Np.e. Basic performance of final model V over ~7V (4 segment series connection): Gain: 8x10 5, Crosstalk+Afterpulse probability: 25%, Signal decay time: 30ns PDE: 16~25% (large uncertainty due to geometry of the setup) VUV sensitivity and short decay time are confirmed.

Mass test in room temperature 14 LED 600 prototype MPPCs have been tested in room temperature. Basic properties at T=20 deg are measured for each chip No dead channel found. Same setup is being used for the test of final model MPPCs (4000 pcs). Readout PCB relays to change readout ch MPPC insertion/removal tools Temperature controlled chamber

Mass test in liquid Xe 15 feed-through α sources 241 Am LED PCBs (12+12) in LXe 600 prototype MPPCs are tested in liquid Xe Goal: Test all the readout system (PCB etc.) MPPC & PCB

Mass test in liquid Xe 16 feed-through in LXe 600 prototype MPPCs are tested in liquid Xe Goal: Test all the readout system (PCB etc.) MPPC & PCB

Mass test in liquid Xe 17 feed-through in LXe 600 prototype MPPCs are tested in liquid Xe Goal: Test all the readout system (PCB etc.) MPPC & PCB

Mass test in liquid Xe 18 Response to the LED light and α scintillation signal are measured for all PCBs. We confirmed that MPPC, PCB and feed-through work OK in liquid Xe. Example of α event for one PCB Example of LED charge distribution α There were ~5% of bad channels found. Most of those were caused by bad connections of MPPCs and cables at PCB and feed-through.  Assembly procedure and the design of the connectors and boards will improve. reduce density of connectors direct soldering of cables

Expected detector performance 19 Simulation based on measured properties of MPPCs. Waveform of 1p.e. signal PDE, gain Crosstalk & afterpulse Reconstruction algorithm has been optimized to exploit the advantages of MPPC. u v w

E [MeV] 48 depth > 2cm 1.7% 1.0% Timing resolution t rec – t MC [ps] σ =60ps Expected detector performance 20 ResolutionMEGIMEGII u (mm)52.4 v (mm)52.2 w (mm)63.1 E γ (w<2cm)2.4%1.1% E γ (w>2cm)1.7%1.0% t γ (ps)6760 Position resolution E [MeV] 48 depth < 2cm 2.4% 1.1% Position & energy resolution improve by a factor of 2! Energy resolution Also, γ det. efficiency 63%  69% thanks to less material

Summary & prospect 21  MEG liquid Xe calorimeter will be upgraded by replacing some PMTs to VUV-sensitive MPPCs.  MPPC, PCB and feed-through have been successfully developed and tested in liquid Xe.  Thanks to the high granularity, the position and the energy resolution will improve by a factor of 2.  Mass test of final model MPPCs is ongoing. Construction of the detector will start this autumn.

Backup slides 22

Mass test results 23 1p.e. V over =3.0V 1p.e. pulse V over =3.0V Noise V over =3.0V V over =3.0V Breakdown voltage

Bad channels 24 ~1% of the channels had problems in th PCB and cable connecors. Bad soldering of chips Connector too hard Imperfect isolation of pin

Series connections parallel 2 segmented 4 segmented 100ns 25