Nuclear structure experiments beyond the neutron dripline Unbound – resonance observed known to be unb ound 26 O 19,21 C 15 Be.

Slides:



Advertisements
Similar presentations
E1 Strength distribution of halo nuclei observed via the Coulomb breakup Takashi Nakamura Tokyo Institute of Technology Workshop on Statistical Nuclear.
Advertisements

Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Kurchatov Institute, Moscow
Be BeTe BeO Gamma-ray spectroscopy of cluster hypernuclei : 9  Be K. Shirotori for the Hyperball collaboration, Tohoku Univ. 8 Be is known as the  -
CEA DSM Irfu Shell evolution towards 100 Sn Anna Corsi CEA Saclay/IRFU/SPhN.
不安定核反応実験における 高速中性子の検出 Fast Neutron Detection in Unstable Nuclei Reaction Experiment Ryuki Tanaka Tokyo Institute of Technology.
Exploring the drip lines: where are the proton and neutron drip lines exotic decay modes: - two-proton radioactivity -  -delayed multi-particle emission.
Unstable vs. stable nuclei: neutron-rich and proton-rich systems
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
S. Sidorchuk (JINR, Dubna) Dubna Radioacive Ion Beams DRIBsIII: STATUS and PROSPECTS S. Sidorchuk (JINR, Dubna) 9-16 May 2013, Varna, Bulgaria 1.
Nuclear Reactions Emissions, Balancing, and predicting decays of Nuclear Reactions.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Down and Up Along the Proton Dripline Heavy One-Proton Emitter Light One-Proton Emitter Light Two-Proton Emitter Heavy Two Proton Emitter.
218 Po ‘ 218 Po =Radium A’ ‘ 218 At =Radium B’ C D E 210 Po =Radium ‘F’ Radon =‘Emanation’ ‘Radium’ C’ C’’ The Natural Decay Chain for 238 U Aside: information.
Limits of Stability Neutron Drip Line? Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit?
EURISOL User Group Workshop Jan 14-18, Florence, Italy STRUCTURE NEAR THE NEUTRON DRIP LINE AT N=24 Zdeněk Dlouhý Nuclear Physics Institute ASCR,
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
Proton and Two-Proton Decay of a High-Spin Isomer in 94 Ag Ernst ROECKL GSI Darmstadt and Warsaw University.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
* Spokesperson: Isao Tanihata - Beijing and Osaka Co-spokesperson: Hans Geissel – GSI Chair of Collaboration board: Juha Äystö – Helsinki Co-chair: Christoph.
The structure of giant resonances in calcium and titanium isotopes. N.G.Goncharova, Iu.A.Skorodumina Skobelzyn Institute of Nuclear Physics, Moscow State.
1 10/15/2015 Cuie Wu School of Physics, Peking University Neutron removal reactions of 17 C Cuie Wu et al., JPG31(2005)39.
Proposal: Beta-delayed neutron spectroscopy of Ca.
Alex Brown UNEDF Feb Strategies for extracting optimal effective Hamiltonians for CI and Skyrme EDF applications.
HITES, June 2012 Status of reaction theory for studying rare isotopes Filomena Nunes Michigan State University.
1 Reaction Mechanisms with low energy RIBs: limits and perspectives Alessia Di Pietro INFN-Laboratori Nazionali del Sud.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna Experimental activities and main results of the researches at FLNR (JINR) Theme: Synthesis.
Recent Studies of Hypernuclei Formation with Electron Beams at MAMI Patrick Achenbach U Mainz Sept. 2o13.
1 stephan ettenauer for the TITAN collaboration Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF Weakly Bound Systems in Atomic.
Structure of neutron-rich Λ hypernuclei E. Hiyama (RIKEN)
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Probed with radioactive beams at REX-ISOLDE Janne Pakarinen – on behalf of the IS494 collaboration – University of Jyväskylä ARIS 2014 Tokyo, Japan Shapes.
Three-body radiative capture reactions in astrophysics L.V. Grigorenko K.-H. Langanke and M. Zhukov FLNR, JINR, Dubna and GSI, Darmstadt.
 2-proton emission  experimental set-up  decay results  2p emission from 45 Fe  perspectives Jérôme Giovinazzo – CEN Bordeaux-Gradignan – France PROCON’03.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
Coulomb breakup of the two-neutron halo nucleus 11 Li Takashi Nakamura Tokyo Institute of Technology International Conference on Finite Fermionic Systems.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
SEARCH FOR RARE CLUSTER CONFIGURATION IN 14 C NUCLEUS International Conference on Particle Physics and Astrophysics October 05 – 10, 2015 L.Yu. Korotkova,
NN2012 Slide 1 Exploring the neutron dripline two neutrons at a time: Observations of 26 O and 16 Be ground state resonances Zach Kohley for the MoNA Collaboration.
1 CNS summer school 2002 The RI-Beam Factory and Recent Development in Superheavy Elements Search at RIKEN ◆ Brief introduction to the RI Beam Factory.
Fusion of light halo nuclei
Observation of new neutron-deficient multinucleon transfer reactions
Exotic neutron-rich nuclei
ISOLDE Nuclear Reaction and Nuclear Structure Course April 2014 Nuclear Reaction at Intermediate to Relativistic Energies: what data tell us (I)
Coulomb breakup of 22 C and 31 Ne N. Kobayashi Department of Physics, Tokyo Institute of Technology.
1 BETA-DELAYED NEUTRON SPECTROSCOPY OF 51,52,53,(54) Ca A. Gottardo, R. Grzywacz, M. Madurga ISOLDE Workshop2015.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Physics at the extremes with large gamma-ray arrays Lecture 3 Robert V. F. Janssens The 14 th CNS International Summer School CNSSS15 Tokyo, August 26.
Tetsuya MURAKAMI For SAMURAI-TPC Collaboration Physics Using SAMURAI TPC.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Bertram Blank CEN Bordeaux-Gradignan IVICFA 's Fridays: EXPERIMENTAL PHYSICS, October 3, 2014 Discovery of radioactive decays One-proton radioactivity.
Leonid Grigorenko Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia Advances and prospects in the theoretical studies of few-body decays 25th.
CNS, Univ. of Tokyo MATSUSHITA Masafumi ガンマ線核分光で探る不安定核の殻構造進化 Sep 第3回 RIBF 討論会.
Constraints on E sym (  )-L from RIB induced reactions…and more Zach Kohley NSCL/MSU NuSYM14 July 7, 2014.
New proposal for the BRIKEN campaign
Yuliya Aksyutina for the LAND-R3B collaboration Motivation
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Decay spectroscopy with LaBr3(Ce) detectors at RIKEN and GSI
Single trigger, no target
Experimental studies of the continuum in nuclei
Neutron Detection with MoNA LISA
News Physics Colloquium at 4:30 pm, today at Room 216-1
Structure at and beyond the dripline below the oxygen anomaly
Motivation: haloes & structure N~14-16 S2n, sR, momentum distributions
New Transuranium Isotopes in Multinucleon Transfer Reactions
Presentation transcript:

Nuclear structure experiments beyond the neutron dripline Unbound – resonance observed known to be unb ound 26 O 19,21 C 15 Be

26 O Measured neutron unbound resonances T. Baumann, A. Spyrou, and M.T., Rep. Prog. Phys. 75 (2012) C Be

Radioactive beams / invariant mass experimental setups B, Jonson, Phys. Rep. 389 (2004) 1 T. Aumann and T. Nakamura, Phys. Scr. T152 (2013) J. L. Lecouey, Few-Body Systens 34 (2004) 21 DeMoN SAMURAI/ NEBULA ALADIN/LAND Sweeper/MoNA-LISA

National Superconducting Cyclotron Laboratory Coupled Cyclotron Facility Located on the campus of Michigan State University  38 faculty  31 research associates  66 graduate students  Site for the Facility for Rare Isotope Beams (FRIB)  National user facility  >700 users  FRIB users organization has >1300 members

Modular Neutron Array (MoNA) at NSCL Augustana College, IL Central Michigan University, MI Concordia College, MN Florida State University, FL Gettysburg College, PA Hampton University, VA Hope College, MI Indiana University at South Bend, IN Michigan State University, MI Ohio Wesleyan University, OH Wabash College, IN Western Michigan University, MI Westmont College, CA MoNA Collaboration

Invariant Mass Spectroscopy Secondary Beam ( 26 F) Neutrons Fragments ( 24 O) 9 Be( 26 F, 25 O)X 24 O + n

Predicted scheme for 15 Be and 16 Be

Search for 15 Be No evidence for 14 Be+n A. Spyrou et al., Phys. Rev. C 84 (2011) Two-proton removal from 17 C at 55 MeV/u to populate 15 Be

Two-neutron emitter 16 Be A. Spyrou et al., Phys. Rev. Lett. 108 (2012) CERN Courier, May 2012 E decay = 1.35(10) MeV Γ decay = keV −200 dineutron sequential three-body see also, M. Marques et al., PRL 109 (2012)

Missing 5/2 + state in 15 Be di-neutron 3/2 + 5/2 + ???

14 Be(d,p) 15 Be Element identification Isotope identification Neutron identification J. Snyder et al., Phys. Rev. C (2013) submitted

15 Be decay energy spectrum E decay = 1.8(1) MeV Γ decay = 575(200) keV J. Snyder et al., Phys. Rev. C (2013) submitted

15 Be decay scheme  First identification of 15 Be  5/2 + state is not necessarily the ground state  3/2 + state decays by 3-neutron emission to 12 Be

Discovery of isotopes M. Thoennessen, Rep. Prog. Phys. 76 (2013) Be is the 12 th new isotope discovered in 2013

Halo nucleus 22 C Carbon-22 Is Shockingly Huge And Shockingly Stable K. Tanaka et al., Phys. Rev. Lett. 104 (2010) L. Gaudefroy et al. Phys. Rev. Lett. 109 (2012)  Two-neutron halo in 22 C  Dominant ν2s 2 1/2 configuration  S 2n = −0.14(46) MeV or keV  Separation energy depends on virtual s 1/2 state in subsystem 21 C −0

Search for 21 C J.D. Stevenson and P.B. Price, Phys. Rev. C 24 (1981) 2102 “evidence for the possible particle stability of 21 C” M. Langevin et al., Phys. Lett. B 150 (1985) 71 “ 21 C is particle instable” Proton removal reaction from 22 N should populate 21 C s 1/2 state D. Sohler et al., Phys. Rev. C 77 (2008) Ground state of 22 N is probably 0 −

22 N(-1p) 21 C S. Mosby et al., Nucl. Phys. A909, 69 (2013) |a s | < 2.8 fm No evidence for low-lying state a s = −15 fm ~ S n = −100 keV S n −400 keV < ~

22 N(-1p) 21 C [1] H.T. Fortune and R. Sherr, Phys. Rev. C 85 (2012) [2] S.N. Ershov, J.S. Vaagen, and M.V. Zhukov, Phys. Rev. C 86 (2012) [3] M.T. Yamashita et al., Phys. Lett. B 715 (2012) 282 [4] B. Acharya, C. Ji, and D.R. Phillips, arXiv: (2013) S 2n < 320 keV (exp.) S 2n < 220 keV [1] S 2n < 50 keV [2] S 2n < 120 keV [3] S 2n < 100 keV [4] ( 22 C): 4.5 fm 5.4 fm 6.3 fm from ref. [4] From present measurement: S 2n 40 keV < ~

Search for 21 C C.-X. Yuan et al., Chin. Phys. C 33 (2009) 55  21 C still not observed  First excited 5/2 + state predicted at ~1 MeV  This state can be populated with the transfer reaction 20 C(d,p) 21 C

Spectroscopy of neutron-rich oxygen isotopes

Populating 26 O in one-proton removal reactions from 27 F E. Lunderberg et al., Phys. Rev. Lett. 108 (2012)

Reconstructing 26 O E. Lunderberg et al., Phys. Rev. Lett. 108 (2012)

Identifying real two-neutron events Causality cuts: Δv = 7 cm/ns Δ d = 25 cm E rel = 150 keV +50  150 E. Lunderberg et al., Phys. Rev. Lett. 108 (2012)

Coupled cluster calculations G. Hagen et al., Phys. Rev. Lett. 108 (2012)

Results confirmed by R 3 B-LAND C. Caesar et al., arXiv: L.V. Grigorenko et al., Phys. Rev. C 84 (2011) E rel < 120 keV Lifetime limit:  < 5.7 ns

Lifetime measurement Z. Kohley et al., Phys. Rev. Lett. 110 (2012) Lifetime:  = (stat)  ±3 (syst) ps −1.5 82%C.L. for possible finite two-neutron radioactivity lifetime improved lifetime limit:  < 5.5 ps

New lifetime calculations L.V. Grigorenko, I.G. Mukha, and M.V. Zhukov, arXiv: “realistic theoretical limits” E T < 1 keV

Improved lifetime measurements Influence of beam energy and target thickness on lifetime sensitivity

Limits of beam intensity C.R. Hoffman et al., Phys. Rev. Lett. 100 (2008) MSU ~80counts/100keV C. Caesar et al., arXiv:1209:0156v2 GSI ~15counts/200keV

Recent results from RIBF on 25 O RIKEN Factor of ~25 intensity increase compared to MSU Y. Kondo et al., COMEX4, Oct.2012 >1100counts/50keV

Potential for discovery of two new isotopes… Unbound – resonance observed known to be unb ound 25,26 O 24 N 23 C

Improved limit from RIKEN data?

Conclusions  Neutron decay spectroscopy is an effective tool to explore nuclei at and beyond the neutron dripline  Discovery of 15 Be; confirmation of direct two- neutron decay of 16 Be  Limit on two-neutron separation energy of 22 C from non-observation of 21 C  “Indications” of two-neutron radioactivity in 26 O