BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.

Slides:



Advertisements
Similar presentations
Mendel and the Gene Idea
Advertisements

Genetics: an Introduction
Patterns of Inheritance aka Genetics Parents pass heritable traits to offspring (genes) Gregor Mendel –1860’s, Austrian monk experimented with garden peas.
Ch 14 Gregor Mendel and Inheritance Study Began research late 1850’s St. Thomas (Augustinian) monastery, Brno, Yugoslavia.
Figure LE 14-2 Removed stamens from purple flower Transferred sperm- bearing pollen from stamens of white flower to egg- bearing carpel of purple.
Mendelian Genetics An Overview. Pea plants have several advantages for genetics. –Pea plants are available in many varieties with distinct heritable.
Mendelian Genetics. What Came Before? Blending Inheritance Inheritance of Acquired Characteristics.
MENDELIAN GENETICS. OBJECTIVES Understand Mendel’s principles governing genetics Understand meaning of relevant vocabulary Predict results of mono/dihybrid.
Human Genetics Phenotype: observed physical and functional traits
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The science of heredity dates back to ancient attempts at selective breeding Parents.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Genetics is the science of heredity These black Labrador puppies are purebred—
CHAPTER 9 Patterns of Inheritance. Genetic testing –Allows expectant parents to test for possibilities in their unborn child. –Includes amniocentesis.
CHAPTER 9 Patterns of Inheritance
CHAPTER 9 Patterns of Inheritance
NOTES: Chapter 14, part 1 – Mendelian Genetics!!
4 Chapter 14~ Mendel & The Gene Idea The Origins of Genetics 4 Heredity: the passing of traits from parents to offspring 4 Gregor Mendel did experiments.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 14 Mendel and the gene idea.
Genetics Genetics is the scientific study of heredity and variation.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece.
Ch. 9 Patterns of Inheritance
Gregor Mendel Genetics- the scientific study of heredity Mendel was an Austrian monk who wanted to understand genetics. Mendel.
Mendel and the Gene Idea.  Monk  Pea Plants  many varieties, easy to reproduce and control, tracked traits that were “either-or”, started with true.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Gregor Mendel & Basic Genetic Principles. Who is Gregor Mendel? Austrian Monk that experimented with pea plants. He discovered the basic principles of.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
The Chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes form parent to offspring Heredity Part.
6.3 Mendel and Heredity KEY CONCEPT Mendel’s research showed that traits are inherited as discrete units.
Patterns of Inheritance genetics—the branch of biology that studies heredity.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Human Genetic Disorders
Exploring Mendelian Genetics. Law of Independent Assortment Does the segregation of one pair of alleles affect the segregation of another pair of alleles?
Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings PowerPoint Lectures for Biology: Concepts and Connections, Fifth Edition – Campbell,
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Chapter 14 Mendel and the Gene Idea. The “ blending ” hypothesis is the idea that genetic material from the two parents blends together (like blue and.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology: Concepts and Connections, Fifth Edition – Campbell,
Chapter 9 Patterns of Inheritance. MENDEL’s LAW The science of genetics has ancient roots Pangenesis, proposed around 400 B.C. by Hippocrates, was an.
Genetics and Heredity (Mendelian). History Genetics is the study of genes. Genetics is the study of genes. Inheritance is how traits, or characteristics,
6.3 Mendel and Heredity KEY CONCEPT Mendel’s research showed that traits are inherited as discrete units.
Patterns of Inheritance Mendelian Genetics. Mendel’s Principles 1. Principle of Segregation 2. Principle of Independent Assortment Punnett Squares and.
Chapter ,9.5, Homologous chromosomes bear the alleles for each character P P a a B b PP aa Bb Dominant allele Recessive allele Gene.
Chapter Introduction – Over thousands of years, humans have chosen and mated dogs with specific traits. – The result has been an incredibly diverse.
© 2013 Pearson Education, Inc. Lectures by Edward J. Zalisko PowerPoint ® Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential.
PowerPoint Lectures Campbell Biology: Concepts & Connections, Eighth Edition REECE TAYLOR SIMON DICKEY HOGAN Chapter 9 Lecture by Edward J. Zalisko Patterns.
Gregor Mendel Genetics- the scientific study of heredity Mendel was an Austrian monk who wanted to understand genetics. Mendel.
Patterns of Inheritance Chapter 9. Genetics The science of heredity. A distinct genetic makeup results in a distinct set of physical and behavioral characteristics.
© 2013 Pearson Education, Inc. Lectures by Edward J. Zalisko PowerPoint ® Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Inheritance.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Mendel and the Gene Idea. Gregor Mendel: The Man  Austrian monk  Began breeding peas in 1857 to study inheritance  Kept very accurate records of his.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Genetics is the science of heredity These black Labrador puppies are purebred—
Patterns of Inheritance
Mendel & the gene idea Fig. 14-1
Gregor Mendel And The Genetic Revolution
Mendel and the Gene Idea
MENDEL AND THE GENE IDEA Gregor Mendel’s Discoveries
Rollercoaster of Genes by Dr. Annette M. Parrott
Patterns of Inheritance
Mendel and the Gene Idea
Figure
General Animal Biology
Lesson 6.1 Mendel’s Experiments.
MENDEL AND THE GENE IDEA Gregor Mendel’s Discoveries
General Animal Biology
Introduction to Genetics
MENDEL AND THE GENE IDEA Section A: Gregor Mendel’s Discoveries
Presentation transcript:

BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence G. Mitchell Martha R. Taylor From PowerPoint ® Lectures for Biology: Concepts & Connections CHAPTER 9 Patterns of Inheritance Modules 9.1 – 9.10

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Genetics is the science of heredity These black Labrador puppies are purebred— their parents and grandparents were black Labs with very similar genetic makeups –Purebreds often suffer from serious genetic defects Purebreds and Mutts — A Difference of Heredity

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The parents of these puppies were a mixture of different breeds –Their behavior and appearance is more varied as a result of their diverse genetic inheritance

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The science of heredity dates back to ancient attempts at selective breeding Until the 20th century, however, many biologists erroneously believed that –characteristics acquired during lifetime could be passed on –characteristics of both parents blended irreversibly in their offspring MENDEL’S PRINCIPLES 9.1 The science of genetics has ancient roots

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Modern genetics began with Gregor Mendel’s quantitative experiments with pea plants 9.2 Experimental genetics began in an abbey garden Figure 9.2A, B Stamen Carpel

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Mendel crossed pea plants that differed in certain characteristics and traced the traits from generation to generation Figure 9.2C This illustration shows his technique for cross-fertilization 1 Removed stamens from purple flower White Stamens Carpel Purple PARENTS (P) OFF- SPRING (F 1 ) 2 Transferred pollen from stamens of white flower to carpel of purple flower 3 Pollinated carpel matured into pod 4 Planted seeds from pod

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Mendel studied seven pea characteristics Figure 9.2D He hypothesized that there are alternative forms of genes (although he did not use that term), the units that determine heredity FLOWER COLOR FLOWER POSITION SEED COLOR SEED SHAPE POD SHAPE POD COLOR STEM LENGTH PurpleWhite AxialTerminal YellowGreen RoundWrinkled InflatedConstricted GreenYellow TallDwarf

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings From his experimental data, Mendel deduced that an organism has two genes (alleles) for each inherited characteristic –One characteristic comes from each parent 9.3 Mendel’s principle of segregation describes the inheritance of a single characteristic P GENERATION (true-breeding parents) F 1 generation F 2 generation Purple flowersWhite flowers All plants have purple flowers Fertilization among F1 plants (F 1 x F 1 ) 3 / 4 of plants have purple flowers 1 / 4 of plants have white flowers Figure 9.3A

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings A sperm or egg carries only one allele of each pair –The pairs of alleles separate when gametes form –This process describes Mendel’s law of segregation –Alleles can be dominant or recessive GENETIC MAKEUP (ALLELES) P PLANTS F 1 PLANTS (hybrids) F 2 PLANTS PPpp All PAll p All Pp 1/2 P1/2 P 1/2 p1/2 p Eggs P p P PP p Sperm Pp pp Gametes Phenotypic ratio 3 purple : 1 white Genotypic ratio 1 PP : 2 Pp : 1 pp Figure 9.3B

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Alternative forms of a gene (alleles) reside at the same locus on homologous chromosomes 9.4 Homologous chromosomes bear the two alleles for each characteristic GENE LOCI Figure 9.4 PaB DOMINANT allele RECESSIVE allele Pab GENOTYPE:PPaaBb HOMOZYGOUS for the dominant allele HOMOZYGOUS for the recessive allele HETEROZYGOUS

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings By looking at two characteristics at once, Mendel found that the alleles of a pair segregate independently of other allele pairs during gamete formation –This is known as the principle of independent assortment 9.5 The principle of independent assortment is revealed by tracking two characteristics at once

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 9.5A HYPOTHESIS: DEPENDENT ASSORTMENT HYPOTHESIS: INDEPENDENT ASSORTMENT P GENERATION F 1 GENERATION F 2 GENERATION RRYYrryy GametesRY Yellow round ry RrYy EggsSpermRY ry RY ry 1/21/2 1/21/2 1/21/2 1/21/2 Actual results contradict hypothesis RRYYrryy RY ry Gametes RrYy EggsRY rY 1/41/4 1/41/4 Ry ry 1/41/4 1/41/4 RY rY Ry ry 1/41/4 1/41/4 1/41/4 1/41/4 RRYY RrYY RRYyrrYYRrYy rrYyRRyyrrYy Rryy rryy 9 / 16 3 / 16 1 / 16 Green round Yellow wrinkled Yellow wrinkled ACTUAL RESULTS SUPPORT HYPOTHESIS

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Independent assortment of two genes in the Labrador retriever Figure 9.5B PHENOTYPES Black coat, normal vision B_N_ Blind GENOTYPES MATING OF HETEROZYOTES (black, normal vision) PHENOTYPIC RATIO OF OFFSPRING Black coat, blind (PRA) B_nn Chocolate coat, normal vision bbN_ Chocolate coat, blind (PRA) bbnn 9 black coat, normal vision 3 black coat, blind (PRA) 3 chocolate coat, normal vision 1 chocolate coat, blind (PRA) Blind BbNn

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The offspring of a testcross often reveal the genotype of an individual when it is unknown 9.6 Geneticists use the testcross to determine unknown genotypes TESTCROSS: B_GENOTYPESbb BBBbor Two possibilities for the black dog: GAMETES OFFSPRING All black1 black : 1 chocolate B b B b b Bb bb Figure 9.6

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Inheritance follows the rules of probability –The rule of multiplication and the rule of addition can be used to determine the probability of certain events occurring 9.7 Mendel’s principles reflect the rules of probability F 1 GENOTYPES Bb female F 2 GENOTYPES Formation of eggs Bb male Formation of sperm 1/21/2 1/21/2 1/21/2 1/21/2 1/41/4 1/41/4 1/41/4 1/41/4 BB BB B B b b b b bb Figure 9.7

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The inheritance of many human traits follows Mendel’s principles and the rules of probability 9.8 Connection: Genetic traits in humans can be tracked through family pedigrees Figure 9.8A

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Family pedigrees are used to determine patterns of inheritance and individual genotypes Figure 9.8B Dd Joshua Lambert Dd Abigail Linnell D_ Abigail Lambert Female Dd Elizabeth Eddy D_ John Eddy ?D_ Hepzibah Daggett ? ? ddDd ddDd Male Deaf Hearing dd Jonathan Lambert

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Most such disorders are caused by autosomal recessive alleles –Examples: cystic fibrosis, sickle-cell disease 9.9 Connection: Many inherited disorders in humans are controlled by a single gene Figure 9.9A DD dd Normal Dd Normal Dd DD Normal Dd Normal (carrier) Dd Normal (carrier) dd Deaf EggsSperm PARENTS OFFSPRING

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings A few are caused by dominant alleles Figure 9.9B –Examples: achondroplasia, Huntington’s disease

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Table 9.9

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Karyotyping and biochemical tests of fetal cells and molecules can help people make reproductive decisions –Fetal cells can be obtained through amniocentesis 9.10 Connection: Fetal testing can spot many inherited disorders early in pregnancy Figure 9.10A Amniotic fluid Fetus (14-20 weeks) Placenta Amniotic fluid withdrawn Centrifugation Fetal cells Fluid UterusCervix Cell culture Several weeks later Karyotyping Biochemical tests

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Chorionic villus sampling is another procedure that obtains fetal cells for karyotyping Figure 9.10B Fetus (10-12 weeks) Placenta Chorionic villi Suction Several hours later Fetal cells (from chorionic villi) Karyotyping Some biochemical tests

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Examination of the fetus with ultrasound is another helpful technique Figure 9.10C, D