Retrieval of desert dust aerosols vertical profiles from IASI measurements in the TIR atmospheric window Sophie Vandenbussche, Svetlana Kochenova, Ann-Carine.

Slides:



Advertisements
Similar presentations
Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Simulation of skylight polarization with the DAK model and.
Advertisements

Boundary Layer Clouds & Sea Spray Steve Siems, Yi (Vivian) Huang, Luke Hande, Mike Manton & Thom Chubb.
A Methodology for Simultaneous Retrieval of Ice and Liquid Water Cloud Properties O. Sourdeval 1, L. C.-Labonnote 2, A. J. Baran 3, G. Brogniez 2 1 – Institute.
A. di Sarra 23/10/2014. radiation budget surface energy budget photochemistry heterogeneous chemistry air quality/health fertilization atmospheric thermal.
GEOS-5 Simulations of Aerosol Index and Aerosol Absorption Optical Depth with Comparison to OMI retrievals. V. Buchard, A. da Silva, P. Colarco, R. Spurr.
1 An initial CALIPSO cloud climatology ISCCP Anniversary, July 2008, New York Dave Winker NASA LaRC.
GEO-CAPE COMMUNITY WORKSHOP MAY Vijay Natraj 1, Xiong Liu 2, Susan Kulawik 1, Kelly Chance 2, Robert Chatfield 3, David P. Edwards 4, Annmarie.
Near Surface Soil Moisture Estimating using Satellite Data Researcher: Dleen Al- Shrafany Supervisors : Dr.Dawei Han Dr.Miguel Rico-Ramirez.
Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
Constraining aerosol sources using MODIS backscattered radiances Easan Drury - G2
Air Quality-Climate Interactions Aijun Xiu Carolina Environmental Program.
OMI NO 2 observations of boreal forest fires Nicolas Bousserez, Randall V. Martin, Lok Lamsal, and the ARCTAS team Dalhousie University Halifax, Nova Scotia.
Retrieval of thermal infrared cooling rates from EOS instruments Daniel Feldman Thursday IR meeting January 13, 2005.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Direct aerosol radiative forcing based on combined A-Train observations – challenges in deriving all-sky estimates Jens Redemann, Y. Shinozuka, M.Kacenelenbogen,
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Direct LW radiative effect of Saharan dust aerosols Vincent Gimbert, H.E. Brindley, J.E. Harries Imperial College London GIST 24, 16 Dec 2005, Imperial.
A.Olioso, S. Jacquemoud* & F. Baret UMR Climat, Sol et Environnement INRA Avignon, France * Institut de Physique du Globe de Paris (IPGP) Département de.
ICDC7, Boulder, September 2005 CH 4 TOTAL COLUMNS FROM SCIAMACHY – COMPARISON WITH ATMOSPHERIC MODELS P. Bergamaschi 1, C. Frankenberg 2, J.F. Meirink.
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
Spectrally High resolution Infrared measurements for the characterisation of Volcanic Ash (SHIVA): a new way to study volcanic processes Elisa Carboni.
1 Volcanic ash and SO 2 retrievals from MODIS and SEVIRI: overview and links to SHIVA project S. Corradini and L. Merucci 1 INGV 26 July 2013 – Oxford.
Applications and Limitations of Satellite Data Professor Ming-Dah Chou January 3, 2005 Department of Atmospheric Sciences National Taiwan University.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Upper haze on the night side of Venus from VIRTIS-M / Venus Express limb observations D. Gorinov (1,2), N. Ignatiev (1,2), L. Zasova (1,2), G. Piccioni.
The combined use of MODIS, CALIPSO and OMI level 2 aerosol products for calculating direct aerosol radiative effects Jens Redemann, M. Vaughan, Y. Shinozuka,
Determination of atmospheric structures, aerosol optical properties and particle type with the R-MAN 510 Raman dual polarization lidar super ceilometer.
Aerosol Optical Depth during the Northern CA Fires of 2008 In situ aerosol light scattering and absorption measurements in Reno Nevada, 2008, indicated.
GE0-CAPE Workshop University of North Carolina-Chapel Hill August 2008 Aerosols: What is measurable and by what remote sensing technique? Omar Torres.
Figure 1. (left) Direct comparison of CCN concentration adjusted to 0.4% supersaturation and 499 nm AOD, both observed from ≤1 km altitudes during ARCTAS.
Direct aerosol radiative forcing based on combined A-Train observations and comparisons to IPCC-2007 results Jens Redemann, Y. Shinozuka, M. Vaughan, P.
1 Radiative impact of mineral dust on surface energy balance and PAR, implication for land-vegetation- atmosphere interactions Xin Xi Advisor: Irina N.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Characterization of Aerosols using Airborne Lidar, MODIS, and GOCART Data during the TRACE-P (2001) Mission Rich Ferrare 1, Ed Browell 1, Syed Ismail 1,
Retrieval of Methane Distributions from IASI
Numerical simulations of optical properties of nonspherical dust aerosols using the T-matrix method Hyung-Jin Choi School.
COMPARATIVE TEMPERATURE RETRIEVALS BASED ON VIRTIS/VEX AND PMV/VENERA-15 RADIATION MEASUREMENTS OVER THE NORTHERN HEMISPHERE OF VENUS R. Haus (1), G. Arnold.
Clouds & Radiation: Climate data vs. model results A tribute to ISCCP Ehrhard Raschke, University of Hamburg Stefan Kinne, MPI-Meteorology Hamburg 25 years.
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
Introduction 1. Advantages and difficulties related to the use of optical data 2. Aerosol retrieval and comparison methodology 3. Results of the comparison.
Ground-based infrared retrievals of atmospheric dust properties over Niamey, Niger A case study: dust storm event (7-10 March 2006)* ATMS 790 R- Graduate.
Rong-Ming Hu and Randall Martin Inspiring Minds. Retrieval of Aerosol Single Scattering Albedo (SSA)  Determined with radiative transfer calculation.
H 2 O retrieval from S5 NIR K. Weigel, M. Reuter, S. Noël, H. Bovensmann, and J. P. Burrows University of Bremen, Institute of Environmental Physics
Radiative transfer in the thermal infrared and the surface source term
Daily observation of dust aerosols infrared optical depth and altitude from IASI and AIRS and comparison with other satellite instruments Christoforos.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Cloud property retrieval from hyperspectral IR measurements Jun Li, Peng Zhang, Chian-Yi Liu, Xuebao Wu and CIMSS colleagues Cooperative Institute for.
Direct aerosol radiative effects based on combined A-Train observations Jens Redemann, Y. Shinozuka, J. Livingston, M. Vaughan, P. Russell, M.Kacenelenbogen,
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
Radiative transfer simulations of the ATR-42 SW and LW irradiance profiles above Lampedusa Island Daniela Meloni with contributions from: ChArMEx/ADRIMED.
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
A Brief Overview of CO Satellite Products Originally Presented at NASA Remote Sensing Training California Air Resources Board December , 2011 ARSET.
Convective Transport of Carbon Monoxide: An intercomparison of remote sensing observations and cloud-modeling simulations 1. Introduction The pollution.
University of Oxford EUMETSAT Satellite Conference 2004 Aerosol Retrieval Algorithm for Meteosat Second Generation Sam Dean, Steven Marsh and Don Grainger.
Satellite Remote Sensing of the Air Quality Health Index Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Lok Lamsal, Dalhousie University.
STCE Annual Meeting 2012 Meridian Room, ROB, 31 May 2012 Summary of the Aerosol Workshop Retrieval of Aerosol Properties from Satellite and Ground-based.
number Typical aerosol size distribution area volume
Methane Retrievals in the Thermal Infrared from IASI AGU Fall Meeting, 14 th -18 th December, San Francisco, USA. Diane.
What Are the Implications of Optical Closure Using Measurements from the Two Column Aerosol Project? J.D. Fast 1, L.K. Berg 1, E. Kassianov 1, D. Chand.
Motivation: Help satellite studies of aerosol-cloud interactions Aerosol remote sensing near clouds is challenging Excluding areas near-cloud risks biases.
Vertically resolved CALIPSO-CloudSat aerosol extinction coefficient in the marine boundary layer and its co-variability with MODIS cloud retrievals David.
Extinction measurements
Dust detection methods applied to MODIS and VIIRS
VLIDORT and Linearized MIE for the Retrieval of Aerosol Parameters
Carbon monoxide from shortwave infrared measurements of TROPOMI: Algorithm, Product and Plans Jochen Landgraf, Ilse Aben, Otto Hasekamp, Tobias Borsdorff,
N. Bousserez, R. V. Martin, L. N. Lamsal, J. Mao, R. Cohen, and B. R
Modelling the radiative impact of aerosols from biomass burning during SAFARI-2000   Gunnar Myhre, Terje K. Berntsen, James M. Haywood, Jostein K. Sundet,
Chris Sioris Kelly Chance
Mike Pavolonis (NOAA/NESDIS/STAR)
Presentation transcript:

Retrieval of desert dust aerosols vertical profiles from IASI measurements in the TIR atmospheric window Sophie Vandenbussche, Svetlana Kochenova, Ann-Carine Vandaele, Nicolas Kumps, Martine De Mazière With thanks to Robert Spurr for fruitful RT discussions

S. Vandenbussche - STCE Workshop: Retrieval of aerosol properties – 24 May 2012 Introduction Desert dust is one of the major types of aerosols in the atmosphere, responsible for direct climate forcing: absorbtion, scattering and emission indirect forcing through interactions with clouds Health issues when close to the surface

S. Vandenbussche - STCE Workshop: Retrieval of aerosol properties – 24 May 2012 Introduction (continued) Aerosols data are needed not only at Visible wavelengths but also in the Thermal Infrared: No direct relation between measurements at VIS and TIR wavelengths (for ex. different sensitivity to particle size) High transmittance window, high impact of aerosols Day and night measurements Retrieval possible over bright surfaces (deserts)

S. Vandenbussche - STCE Workshop: Retrieval of aerosol properties – 24 May 2012 Introduction (continued) Current dust retrievals in TIR provide a total column (or optical depth) and sometimes an « equivalent » or « radiative » altitude (one layer of the atm. model) (Pierangelo et al, 2004; Peyridieu et al, 2010; DeSouza-Machado et al, 2010) Direct effects probably reasonably represented No information on the « real » vertical distribution of dust → impact on clouds (or health)?? Modellers would benefit from having « real » profile data for comparisons with the output of their emission and transport models

S. Vandenbussche - STCE Workshop: Retrieval of aerosol properties – 24 May 2012 Challenges… Refractive index? Particle size distribution? Altitude of aerosols: low sensitivity…

S. Vandenbussche - STCE Workshop: Retrieval of aerosol properties – 24 May 2012 Retrieval strategy IASI TIR measurements Clouds <10% Reasonable H 2 O profile Signature of dust GEISA Massie dust refractive index; Log-normal size distr. (r=0.6µm  =2µm) GEISA Massie dust refractive index; Log-normal size distr. (r=0.6µm  =2µm) Rodgers OEM retrieval (ASIMUT + LIDORT) cm -1 & cm -1 Rodgers OEM retrieval (ASIMUT + LIDORT) cm -1 & cm -1 Compute an average spectrum Max 100km, 6h reduce noise improve altitude sensitivity Compute an average spectrum Max 100km, 6h reduce noise improve altitude sensitivity A priori: 50part/cm3 (0-5km alt) Sa: 100% + Gaussian correlation 1km Profile retrieval Aerosol profile, total column and OD at 10µm Averaging kernels → 2 pieces of information 6 points profile A priori: Sa: 10% Column Surface T

S. Vandenbussche - STCE Workshop: Retrieval of aerosol properties – 24 May 2012 Test-case 22 June 2009 Large plume off the West Coast of the Sahara, seen by MODIS/Terra Over the Ocean… NASA Comparisons of IASI results (10h30 – 22h30) with MODIS (Terra) - 10h30 CALIOP (CALIPSO) - 13h30 – 01h30

S. Vandenbussche - STCE Workshop: Retrieval of aerosol properties – 24 May 2012 Results over the ocean CALIOP extinction coeff at 1.064µm NIGHT

S. Vandenbussche - STCE Workshop: Retrieval of aerosol properties – 24 May 2012 Results over the ocean

S. Vandenbussche - STCE Workshop: Retrieval of aerosol properties – 24 May 2012 Results over the ocean OD « general pattern » looks reasonable with respect to MODIS data OD absolute would require comparisons with other retrievals in the TIR for confirmation General profile shape looks alright in most of the cases (considering that there are only 2 degrees of freedom for the profile retrieval); not so good in the 2-layer cases

S. Vandenbussche - STCE Workshop: Retrieval of aerosol properties – 24 May 2012 Results over the desert - preliminary

S. Vandenbussche - STCE Workshop: Retrieval of aerosol properties – 24 May 2012 Results over the desert - preliminary Exactly same strategy as over the ocean (except: surface emissivity from Zhou et al, 2011) Quite a few retrievals do not converge Need OD comparison data General profile shape looks quite alright again

S. Vandenbussche - STCE Workshop: Retrieval of aerosol properties – 24 May 2012 Conclusions We have developed a strategy to retrieve dust aerosol vertical profiles (+ AKs) from IASI TIR measurements works both over ocean and desert (preliminary) vertical profiles are reasonable w.r.t. CALIOP 2 degrees of freedom OD at 10µm reasonable w.r.t. MODIS OD at 550nm More OD comparisons needed including with other TIR retrievals

S. Vandenbussche - STCE Workshop: Retrieval of aerosol properties – 24 May 2012 Perspectives Attempts to retrieve particle size Attempts to quantify uncertainties, to test the retrieval’s robustness Use other refractive indices and compare Retrieval of refractive index (with constraints)?

Thank you!

S. Vandenbussche - STCE Workshop: Retrieval of aerosol properties – 24 May 2012 Additional information on data sources Atmospheric profiles – AFGL 1986 tropical atmosphere – Clouds, H2O, T and p from IASI level2 – Surface T from ECMWF operational reanalyses – Sea emissivity: Newman et al, 2005 – Land emissivity: Zhou et al, 2011 – HITRAN 2008 line parameters and cross-sections MODIS (Terra) data: Aerosol Cloud Daily l3 Global v5.1 CALIOP data: Cloud & Aerosol Profile level 2 v 3.01, provisional