Digital Signal Processing Lecture 6 Frequency Selective Filters

Slides:



Advertisements
Similar presentations
Design of Digital IIR Filter
Advertisements

Signals and Systems Fall 2003 Lecture #7 25 September Fourier Series and LTI Systems 2.Frequency Response and Filtering 3.Examples and Demos.
Chapter 8. FIR Filter Design
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Response to a Sinusoidal Input Frequency Analysis of an RC Circuit.
HILBERT TRANSFORM Fourier, Laplace, and z-transforms change from the time-domain representation of a signal to the frequency-domain representation of the.
Digital Signal Processing IIR Filter IIR Filter Design by Approximation of Derivatives Analogue filters having rational transfer function H(s) can be.
Nonrecursive Digital Filters
EE513 Audio Signals and Systems Digital Signal Processing (Synthesis) Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
Signal and System IIR Filter Filbert H. Juwono
IIR FILTERS DESIGN BY POLE-ZERO PLACEMENT
CHAPTER 7 Digital Filter Design Wang Weilian School of Information Science and Technology Yunnan University.
Frequency Response and Filter Design By Poles and Zeros Positioning Dr. Mohamed Bingabr University of Central Oklahoma Slides For Lathi’s Textbook Provided.
ELEN 5346/4304 DSP and Filter Design Fall Lecture 8: LTI filter types Instructor: Dr. Gleb V. Tcheslavski Contact:
Filtering Filtering is one of the most widely used complex signal processing operations The system implementing this operation is called a filter A filter.
Hossein Sameti Department of Computer Engineering Sharif University of Technology.
Digital Signal Processing – Chapter 11 Introduction to the Design of Discrete Filters Prof. Yasser Mostafa Kadah
Unit 9 IIR Filter Design 1. Introduction The ideal filter Constant gain of at least unity in the pass band Constant gain of zero in the stop band The.
Fundamentals of Electric Circuits Chapter 14
LINEAR-PHASE FIR FILTERS DESIGN
Lect22EEE 2021 Passive Filters Dr. Holbert April 21, 2008.
Lecture 231 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
What is a filter Passive filters Some common filters Lecture 23. Filters I 1.
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
EEE422 Signals and Systems Laboratory Filters (FIR) Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
Relationship between Magnitude and Phase (cf. Oppenheim, 1999)
Frequency Characteristics of AC Circuits
EE513 Audio Signals and Systems Digital Signal Processing (Systems) Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
DSP. What is DSP? DSP: Digital Signal Processing---Using a digital process (e.g., a program running on a microprocessor) to modify a digital representation.
Chapter 5 Frequency Domain Analysis of Systems. Consider the following CT LTI system: absolutely integrable,Assumption: the impulse response h(t) is absolutely.
1 Lecture 5: March 20, 2007 Topics: 1. Design of Equiripple Linear-Phase FIR Digital Filters (cont.) 2. Comparison of Design Methods for Linear- Phase.
Chapter 7 IIR Filter Design
EE Audio Signals and Systems Digital Signal Processing (Synthesis) Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
IIR Filter design (cf. Shenoi, 2006) The transfer function of the IIR filter is given by Its frequency responses are (where w is the normalized frequency.
Filtering. What Is Filtering? n Filtering is spectral shaping. n A filter changes the spectrum of a signal by emphasizing or de-emphasizing certain frequency.
1 Lecture 1: February 20, 2007 Topic: 1. Discrete-Time Signals and Systems.
Dan Ellis 1 ELEN E4810: Digital Signal Processing Topic 8: Filter Design: IIR 1.Filter Design Specifications 2.Analog Filter Design 3.Digital.
Active Filter A. Marzuki. 1 Introduction 2 First- Order Filters 3 Second-Order Filters 4 Other type of Filters 5 Real Filters 6 Conclusion Table of Contents.
Chapter 9-10 Digital Filter Design. Objective - Determination of a realizable transfer function G(z) approximating a given frequency response specification.
1 Conditions for Distortionless Transmission Transmission is said to be distortion less if the input and output have identical wave shapes within a multiplicative.
1 Lecture 4: March 13, 2007 Topic: 1. Uniform Frequency-Sampling Methods (cont.)
Transform Analysis of LTI Systems Quote of the Day Any sufficiently advanced technology is indistinguishable from magic. Arthur C. Clarke Content and Figures.
Chapter 4 LTI Discrete-Time Systems in the Transform Domain
Filtering x y.
Z Transform The z-transform of a digital signal x[n] is defined as:
Lecture 8: Transform Analysis of LTI System XILIANG LUO 2014/10 1.
DISP 2003 Lecture 5 – Part 1 Digital Filters 1 Frequency Response Difference Equations FIR versus IIR FIR Filters Properties and Design Philippe Baudrenghien,
Oh-Jin Kwon, EE dept., Sejong Univ., Seoul, Korea: 2.3 Fourier Transform: From Fourier Series to Fourier Transforms.
What is filter ? A filter is a circuit that passes certain frequencies and rejects all others. The passband is the range of frequencies allowed through.
Finite Impulse Response Filtering EMU-E&E Engineering Erhan A. Ince Dec 2015.
Chapter 5. Transform Analysis of LTI Systems Section
1 BIEN425 – Lecture 12 By the end of the lecture, you should be able to: –Design and implement IIR filters using zero-pole placement.
Relationship between Magnitude and Phase Quote of the Day Experience is the name everyone gives to their mistakes. Oscar Wilde Content and Figures are.
Digital Signal Processing Lecture 9 Review of LTI systems
Digital Signal Processing
Lecture: IIR Filter Design
EEE422 Signals and Systems Laboratory
Speech Signal Processing
IIR Filters FIR vs. IIR IIR filter design procedure
Digital Signal Processing Lecture 4 DTFT
TOPIC 3: FREQUENCY SELECTIVE CIRCUITS
EE Audio Signals and Systems
Chapter 8 Design of Infinite Impulse Response (IIR) Digital Filter
LINEAR-PHASE FIR FILTERS DESIGN
Quick Review of LTI Systems
Fourier Transform Analysis of Signals and Systems
Fundamentals of Electric Circuits Chapter 14
LECTURE 18: FOURIER ANALYSIS OF CT SYSTEMS
Quadrature-Mirror Filter Bank
Tania Stathaki 811b LTI Discrete-Time Systems in Transform Domain Simple Filters Comb Filters (Optional reading) Allpass Transfer.
Tania Stathaki 811b LTI Discrete-Time Systems in Transform Domain Ideal Filters Zero Phase Transfer Functions Linear Phase Transfer.
Presentation transcript:

Digital Signal Processing Lecture 6 Frequency Selective Filters بسم الله الرحمن الرحيم University of Khartoum Department of Electrical and Electronic Engineering Diploma/M. Sc. Program in Telecommunication and Information Systems 2013-2014 Digital Signal Processing Lecture 6 Frequency Selective Filters Dr. Iman AbuelMaaly

Outlines LTI systems as frequency selective filters Ideal filter characterisitics 2013-2014

LTI Systems as Frequency Selective Filters An LTI system perform a filtering process among the various components at its input. An LTI system is a frequency shaping filter (or a frequency selective filter. Applications: Removal of undesirable noise Equalization of communication channels Signal detection in radar or sonar Spectral analysis of signals. 2013-2014

Ideal Filter Characteristics Ideal filters include LPF – HPF – BPF – BSF Characteristics of ideal filters: These filters have a constant gain (unity gain) passband characteristics and zero gain in their stopband. Another characteristics of an ideal filters is a linear phase response. 2013-2014

Ideal Filter Characteristics Magnitude response for some ideal frequency –selective discrete time filters 2013-2014

2013-2014

2013-2014

Ideal Filter Characteristics Ideal filters are of linear phase response: Filter output is a delayed and amplitude scaled version of the input signal. Ideal filters have linear phase characteristics within their passband that is, The derivative of phase has the units of delay, 2013-2014

Ideal Filter Characteristics τg(ω) is the signal delay as a function of frequency, and is called envelop delay or group delay. If Θ(ω) is linear ( as ) = constant All frequency components of the input signal undergo the same time delay. Such filters are not physically realistic 2013-2014

Ideal Filter Characteristics For Example: The ideal LP filter has an impulse response This filter is not causal and is unstable. i.e, physically unrealizable. Its frequency response can be approximated by a realizable filter. 2013-2014

Ideal Filter Characteristics In the previous sections we presented a graphical method for computing the frequency response characteristics from the pole-zero plot. In the following sections the same approach can be used to design digital filters. 2013-2014

Ideal Filter Characteristics The basic principle of the pole-zero placement is: to locate poles near points of the unit circle corresponding to frequencies to be emphasized, and to place zeros near the frequency to be deemphasized. 2013-2014

Ideal Filter Characteristics Constraints: All poles inside the unit circle -> for stability. ( zeros to be placed anywhere) All complex poles and zeros are in conjugate  leads to real coefficients. 2013-2014

Ideal Filter Characteristics For a given pole-zero pattern the system function is as follows: b0 is the gain constant which is selected such that Where ω0 is a frequency in the pass band of the filter. Usually select N ≥ M so that the filter has more poles than zeros. 2013-2014

Low-pass, high-pass and band-pass filers For LP filters : Poles near unit circle at points corresponding to low frequency near (ω=0) Zeros are near or at unit circle at points corresponding to high frequencies (near ω =π) For HP filter : The opposite 2013-2014

Im(z) Re(z) Unit Circle 2013-2014

X X O X O X O O X X X X O O X O X X X 2013-2014

Low-pass, high-pass and band-pass filers Example: A single pole filter with system function If a =0.9, select G =1 - a to have unity gain at ω =0 At high frequencies, the gain is relatively small. 2013-2014

Low-pass, high-pass and band-pass filers An addition of a zero will lead to a one pole one zero filter: In this case the magnitude of H2(ω) goes to zero at ω=π 2013-2014

Low-pass, high-pass and band-pass filers The figure below shows the magnitude and phase responses of A single pole filter, (2) A one pole-one zero filter; 2013-2014

Low-pass, high-pass and band-pass filers 2013-2014

Low-pass, high-pass and band-pass filers To obtain a high pass filter we reflect (fold) the pole-zero location of the LP filter about the imaginary axis in the z-plane. We obtain Its magnitude and frequency responses are shown below: 2013-2014

Low-pass, high-pass and band-pass filers 2013-2014

Band Pass Filters The band pass filter should contain one or more pairs of complex conjugate poles near the unit circle, in the vicinity of the frequency band that constitute the pass band of a filter. Magnitude and phase response of a simple band pass filter are shown in the figure below: 2013-2014

Band Pass Filters 2013-2014

Band Pass Filters Example 2: Design a two –pole filter that has the centre of its pass band at ω=π/2 .Zeros in its frequency response characteristics at ω=0 and ω=π and its magnitude is 2013-2014

A Simple Low Pass To High Pass Transformation By using the frequency translation property of the Fourier transform, it is possible to convert the prototype filter to either a band pass filter, or a high pass filter. If is the impulse response of LTI is its frequency response A HP filter can be obtained by translating by π radians (replacing ω by ω- π ) 2013-2014

A Simple Low Pass To High Pass Transformation i.e., It can be proved that If the LP filter is described as follows difference equation Its frequency response is 2013-2014

A Simple Low Pass To High Pass Transformation If we replace ω by ω- π, then: Which corresponds to 2013-2014

Examples Example 4.5.3 2013-2014

The Digital Resonator A digital resonator is a special two-pole BP filter with the pair of complex conjugate poles located near the unit circle. The name resonator refers to the fact that the filter has a large magnitude response (it resonates) in the vicinity of the pole location. The angular position of the pole determines the resonant frequency of the filter. 2013-2014

The Digital Resonator In the design of a digital resonator with a resonant peak at or near ω = ω0. We select the complex-conjugate poles at In addition, we can select up to two zeros. 1. One choice is a zero at z=1 and a zero at z=-1 Which eliminates the response of the filter at : ω = 0 and ω=π 2. The other choice is to locate zeros at the origin 2013-2014

The Digital Resonator Zeros are located at the origin The system function with zeros at the origin is as follows: Since has its peak at or near ω = ω0, we select the gain b0 so that

The Digital Resonator We obtain Hence, The desired normalization factor is 2013-2014

The Digital Resonator The frequency response can be expressed as: Where U1(ω) and U2(ω) are the magnitude of the vectors from p1 and p2 to the point ω in the unit circle and Φ1(ω) and Φ2(ω) are the corresponding angles of these two vectors. 2013-2014

The Digital Resonator ωr is the resonant frequency of the filter. For any value of r, U1(ω) takes its minimum value (1-r) at ω = ω0 The product U1(ω) U2(ω) reaches a minimum value at the frequency ωr. ωr is the resonant frequency of the filter.

The Digital Resonator The pole-zero pattern and a corresponding magnitude and phase response of a digital resonator with: (1) r =0.8 and (2) r = 0.95 2013-2014

The Digital Resonator When r is close to the unity, ωr ≈ ω0 which is the angular position of the pole. As r approaches unity, the resonance peak becomes sharper because U1(ω) becomes more rapidly in relative size in the vicinity of ω0. A quantitative measure of the sharpness of the resonance is provided by the 3-dB bandwidth ∆ω of the filter. For value of r close to unity: 2013-2014

The Digital Resonator If the zeros are placed at z = ±1 The system function becomes And the frequency response 2013-2014

The Digital Resonator The zeros affect both the magnitude and phase of the resonator Where The addition of zeros leads to: A slightly smaller BW A very small shift in the resonant frequency due to presence of zeros. 2013-2014

The Digital Resonator The pole-zero pattern and a corresponding magnitude and phase response of a digital resonator with zeros at 1 and -1: (1) r =0.8 and (2) r = 0.95 2013-2014

The Notch Filter It is a filter that contains one or more deep notches or, ideally, perfect nulls in its frequency response characteristics. Its applications are in case of some specific frequency components must be eliminated: Instrumentation and recording systems. Power line frequency of 60 Hz and its harmonics be eliminated. 2013-2014

The Notch Filter We need to create a null in the frequency response of the filter at ω0 . We simply introduce a pair of complex conjugate zeros on the unit circle at an angle ω0 , that is The system function of an FIR notch filter is 2013-2014

The Notch Filter Example: A notch filter with a null at Its magnitude response is as shown in the figure. 2013-2014

The Notch Filter Frequency response of a notch filter with or f=1/8 2013-2014

The Notch Filter The effect of poles is to reduce the BW of the notch. The addition of poles near the null results a small ripple in the pass band of the filter due to the resonance created by the pole. 2013-2014

Notch Filters The figure below shows: the frequency response characteristics of two notch filters with poles at (1) r= 0.85 and (2) r=0.95 2013-2014

Note: r affect on notch tightness Notch Filters Note: r affect on notch tightness 2013-2014

Next Lecture Frequency Selective Filters Cont. 2013-2014