HD 97658 and its super-Earth Valerie Van Grootel (University of Liege, Belgium) M. Gillon (U. Liege), D. Valencia (U. Toronto), N. Madhusudhan (U. Cambridge),

Slides:



Advertisements
Similar presentations
PLAnetary Transits and Oscillations of stars H. Rauer 1, C. Catala 2, D. Pollacco 3, S. Udry 4 and the PLATO Team 1: Institut für Planetenforschung, DLR.
Advertisements

Ge/Ay133 What can transit observations tell us about (exo)-planetary science? Part II – “Spectroscopy” & Atmospheric Composition/Dynamics Kudos to Heather.
Courtney Dressing Advisor: David Charbonneau All Souls College, Oxford July 4, 2011.
Exoplanet Atmospheres: Insights via the Hubble Space Telescope Nicolas Crouzet 1, Drake Deming 2, Peter R. McCullough 1 1 Space Telescope Science Institute.
Progress in the asteroseismic analysis of the pulsating sdB star PG S. Charpinet (Laboratoire d’Astrophysique de Toulouse) G. Fontaine and P.
Investigating the structure of transiting planets, from hot Jupiters to Kepler super Earths Jonathan Fortney University of California, Santa Cruz Thanks.
Lecture 1: Introduction & Methods 1.Introduction 2.Techniques for discovery & study 3.The NASA Kepler mission Planetary Systems Orbiting Diverse Stars.
Exploring a Nearby Habitable World …. Orbiting an M-dwarf star Drake Deming NASA’s Goddard Space Flight Center.
SEARCHING FOR PLANETS IN THE HABITABLE ZONE. FROM COROT TO PLATO Ennio Poretti – INAF OAB.
Reaching the 1% accuracy level on stellar mass and radius determinations from asteroseismology Valerie Van Grootel (University of Liege) S. Charpinet (IRAP.
Exoplanet- Asteroseismology Synergies Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK EAHS2012, Oxford, 2012 March 15.
Science Opportunities for HARPS-NEF David W. Latham PDR - 6 December 2007.
HIGH-PRECISION PHOTOMETRY OF ECLIPSING BINARY STARS John Southworth + Hans Bruntt + Pierre Maxted + many others.
Extrasolar Planets.I. 1.What do we know and how do we know it. 2.Basic planetary atmospheres 3.Successful observations and future plans.
First direct image of extrasolar planets billion miles.
Lecture III: Gas Giant Planets 1.From Lecture II: Phase separation 2.Albedos and temperatures 3.Observed transmission spectra 4.Observed thermal spectra.
Lecture 16: Searching for Habitable Planets: Remote Sensing Methods and parameters we can measure Mean density measurements: internal structure Measurements.
PLAnetary Transits and Oscillations of stars Thierry Appourchaux for the PLATO Consortium
„We are not talking about cosmology...“ (A. Sozzetti)
Norio Narita (NAOJ Fellow) Special Thanks to IRD Transit Team Members
The NASA/NExScI/IPAC Star and Exoplanet Database 14 May 2009 David R. Ciardi on behalf of the NStED Team.
The Grand Tour of Exoplanets The New Worlds around Other Stars The Grand Tour of Exoplanets The New Worlds around Other Stars Dániel Apai Space Telescope.
Extrasolar planets. Detection methods 1.Pulsar timing 2.Astrometric wobble 3.Radial velocities 4.Gravitational lensing 5.Transits 6.Dust disks 7.Direct.
Future of asteroseismology II Jørgen Christensen-Dalsgaard Institut for Fysik og Astronomi, Aarhus Universitet Dansk AsteroSeismologisk Center.
Asteroseismological determination of stellar rotation axes: Feasibility study (COROT AP+CP) L. Gizon(1), G. Vauclair(2), S. Solanki(1), S. Dreizler(3)
Further Science of IRD: Synergy with Transiting Planets
High Resolution Spectroscopy of Stars with Planets Won-Seok Kang Seoul National University Sang-Gak Lee, Seoul National University Kang-Min.
Investigating the structure of transiting planets, from hot Jupiters to Kepler super Earths Jonathan Fortney University of California, Santa Cruz Thanks.
The asteroseismic analysis of the pulsating sdB Feige 48 revisited V. Van Grootel, S. Charpinet, G. Fontaine P. Brassard, E.M. Green and P. Chayer.
Toward Detections and Characterization of Habitable Transiting Exoplanets Norio Narita (NAOJ)
Travis Metcalfe (NCAR) Asteroseismology with the Kepler Mission We are the stars which sing, We sing with our light; We are the birds of fire, We fly over.
A Warm Spitzer Survey of Atmospheric Circulation Patterns Image credit G. Orton Heather Knutson (Caltech) In collaboration with: N. Lewis (Arizona), N.
Extrasolar planets Emre Işık (MPS, Lindau) S 3 lecture Origin of solar systems 14 February 2006.
A STEP Expected Yield of Planets … Survey strategy The CoRoTlux Code Understanding transit survey results Fressin, Guillot, Morello, Pont.
A Dedicated Search for Transiting Extrasolar Planets using a Doppler Survey and Photometric Follow-up A Proposal for NASA's Research Opportunities in Space.
Lecture 14: The Discovery of the World of Exoplanets Indirect methods for planet detection The Astrometric method The Doppler shift method The Transit.
1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.
Leslie Rogers Hubble Fellow California Institute of Technology Kepler Science Conference II – November 4, 2013 Glimpsing the Compositions.
Life in the Milky Way: Panel Discussion Wesley A. Traub Chief Scientist, NASA’s Exoplanet Exploration Program Jet Propulsion Laboratory, California Institute.
Homework 8 Due: Monday, Nov. 28, 9:00 pm, Exam 2: Weds., Nov. 30.
Spitzer Space Telescope Spitzer Meets K2 M.Werner, J.Livingston, V.Gorjian, JPL/Caltech; C.Beichman, D.Ciardi, J.Christiansen, R.Akeson, NExSci; J.Krick,
The Empirical Mass Distribution of Hot B Subdwarfs derived by asteroseismology and other means Valerie Van Grootel (1) G. Fontaine (2), P. Brassard (2),
Transiting Exoplanet Search and Characterization with Subaru's New Infrared Doppler Instrument (IRD) Norio Narita (NAOJ) On behalf of IRD Transit Group.
Characterizing atmospheres with JWST: Optimizing multi-instrument observations via simulations and retrievals Tom Greene (NASA ARC) Michael Line (UCSC.
First Attempt of Modelling of the COROT Main Target HD Workshop: "gamma Doradus stars in the COROT fields" /05/ Nice Mehdi – Pierre.
Exoplanet Characterization with JWST
Most 1.6 Earth-Radius Planets are not Rocky Introduction Sub-Neptune, super-Earth-size exoplanets are a new planet class. They account for 0% of the solar.
Metallicity and age of selected nearby G-K Giants L. Pasquini (ESO) M. Doellinger (ESO-LMU) J. Setiawan (MPIA) A. Hatzes (TLS), A. Weiss (MPA), O. von.
How Other Projects Will Enable JWST Transiting Planet Science David Charbonneau (Harvard) 18 November 2015.
The Role of Transiting Planets Dave Latham (CfA) 30 May 2008.
2003 UB313: The 10th Planet?. Extra-Solar or Exoplanets Planets around stars other than the Sun Difficult to observe Hundreds discovered (> 2000 so far)
2003 UB313: The 10th Planet?. Extra-Solar or Exoplanets Planets around stars other than the Sun Difficult to observe Hundreds discovered (> 2000 so far)
Introduction: Goals for JWST Transit Meeting C. Beichman Jonathan Lunine March 11, 2014.
Sounding the cores of stars by gravity-mode asteroseismology Valerie Van Grootel (Institut d’Astrophysique, University of Liege, Belgium) Main collaborators.
BATC Multi-color Photometry of Open Cluster M48 Zhenyu Wu 8.11, 2005, Weifang.
Astronomy 3040 Astrobiology Spring_2016 Day-7. Homework -1 Due Monday, Feb. 8 Chapter 2: 1, 3, 16 23, 24, 26 29, 30, , 54, 56 The appendices will.
Internal dynamics from asteroseismology for two sdB pulsators residing in close binary systems Valérie Van Grootel (Laboratoire d’Astrophysique de Toulouse.
Parallax Luminosity and mass functions - a few basic facts Kinematics of the solar neighborhood Asymmetric drift Thin disk, thick disk Open and globular.
The HARPS-Spitzer Transit Search: First Results Michaël Gillon B.-O. Demory, D. Deming, S. Seager, C. Lovis & the HARPS team IAU Symposium 276 – Torino,
AFS Lecture 4. COROT, COnvection, ROtation & Transits exoplanétaires.
Spitzer Space Telescope Mww-1 Warm Spitzer and Astrobiology Presented to NASA Astrobiology Institute Planetary System Formation Focus Group Michael Werner.
Planetary Sizes Dimitar Sasselov Harvard-Smithsonian Center for Astrophysics.
Asteroseismology of Kepler
COROT, COnvection, ROtation & Transits exoplanétaires
3677 Life in the Universe: Extra-solar planets
Pre-Cursor Data Needed for JWST Transit and Eclipse Observations
NASA discovery (22th February 2017):
PHYS 2070 Tetyana Dyachyshyn
News from the McDonald Observatory Planet Search
Search and Characterization
Presentation transcript:

HD and its super-Earth Valerie Van Grootel (University of Liege, Belgium) M. Gillon (U. Liege), D. Valencia (U. Toronto), N. Madhusudhan (U. Cambridge), D. Dragomir (UC Santa Barbara), and the Spitzer team Spitzer & MOST transit analysis and seismic modeling of the host star The space photometry revolution CoRoT3-KASC7 joint meeting

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 2 1. Introducing HD and its super-Earth HD (V=7.7, K=5.7) T eff = 5170 ± 50 K (Howard et al. 2011) [Fe/H] = ± 0.03  ~ Z d = ± 0.33 pc ; from Hipparcos (Van Leeuwen 2007)  HD b, a transiting super-Earth Discovery by Howard et al. (2011) from Keck- Hires RVs: - M P sin i = 8.2 ± 1.2 M earth - P orb = ± d Transits discovered by Dragomir et al. (2013) with MOST: R P = 2.34 ± 0.18 R earth From Howard et al. (2011) From Dragomir et al. (2013) The second brightest star harboring a transiting super-Earth

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 3 2. Modeling the host star HD Rp α R * Mp α M * 2/3 Radial velocities Transits + the age of the star is the best proxy for the age of its planets (Sun: 4.57 Gyr, Earth: 4.54 Gyr) With Asteroseismology: T. Campante, V. Van Eylen’s talks Without Asteroseismology: stellar evolution modeling

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 4 d = ± 0.33 pc, V = 7.7  L * = ± L sun +T eff from spectroscopy: R * = 0.74 ± 0.03 R sun Stellar evolution code CLES (Scuflaire et al. 2008)  M *, age with T eff, [Fe/H] and L * as inputs (with 1σ uncertainties) M * = 0.77 ± 0.05 M sun No constrain on age α MLT =1.8; no overshooting Mixture AGSS09 CEFF EoS Opacities OPAL05+Ferguson06 Several Y ini 2. Modeling the host star HD 97658

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 5 3. Spitzer observations « Warm » Spitzer IRAC camera at 4.5μm As part of the program to search transits for low-mass planets found in RV (Programs and 90072, PI M. Gillon) 6h-long lightcurve acquired on Aug 10, 2013 after MOST’s ephemeris Blue dots: raw data Red curve: photometric model (= Spitzer systematics)

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 6 Spitzer fully confirms, within 1σ, the MOST ephemeris MOST transit window (17 orbits after) 3. Spitzer observations

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 7 4. The MCMC method to characterize HD 97658b I used Monte-Carlo Markov Chain (MCMC) code of Gillon et al. (2012), with jump parameters (those for which the chain is varying): With uniform prior distribution: mid-transit time T 0, transit depth dF, transit width W, P orb,… With Gaussian prior distribution: stellar mass M * (0.77±0.05 M s ), luminosity (0.355±0.018 L s ), T eff (5170±50 K) and metallicity ([Fe/H]=-0.23±0.03) Jump parameters  model to compare to data through a merit function datamodel penalty for jump parameter with Gaussian prior Results: Probability Density Functions (PDFs) for each jump parameter stellar mass transit depth + for derived parameters: planet mass, radius,…

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 8 5. Global MCMC analyses of RVs, Spitzer and MOST 171 Keck-Hires RVs + 1 Spitzer transit + 3 MOST transits

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 9 6. HD 97658b, a key object for super-Earth characterization Just a word about the uncertainties Host star: - 3% on R * - 8% on M * Planet: - 5% on Rp - 11% on Mp + Spitzer & Keck RVs systematics Note: Dragomir et al. (2013), with the same MOST light curves: R P = 2.34 ± 0.18 R earth (8%) BUT they used spectroscopic log g and not L * from Hipparcos CHEOPS: uncertainties on planet will come from the star PLATO and asteroseismology: star + planet < 5%

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse HD 97658b, a key object for super-Earth characterization « True » super-Earth, water-world, mini-Neptune, dwarf gas planet ?

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse HD 97658b, a key object for super-Earth characterization R P = R earth M P = M earth ρ P = g cm -3  (ρ Earth = 5.5 g cm -3 ) (ρ Jupiter = 1.3 g cm -3 ) « True » super-Earth, water-world, mini-Neptune, dwarf gas planet ?

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse HD 97658b, a key object for super-Earth characterization (T eq ~750 K) Rocks > 60% Water+Ices 0-40% H-He 0-2% (in mass) Internal composition (D. Valencia) Ices: methanie-ammonia

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse HD 97658b, a key object for super-Earth characterization Planet atmosphere (H. Knutson) Possibilities: (2σ…) Water atmosphere (blue) Solar composition atmosphere with cloud/hazes at 1 mbar (green) Excluded: Cloud-free solar and 50x solar composition atmosphere (red) Hubble Space Telescope WFC3 (19 bandpasses in μm) Knutson et al. (2014) ArXiv

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 7. What asteroseismology can bring to HD I computed oscillation adiabatic properties of stellar (consistent) models that respect the T eff, L *, [Fe/H] observational constraints Large separations Δν=ν n+1,0 –ν n,0 and small separations δν=δν 02 =ν n,0 –ν n-1,2 are given here at their ν max ’s (where the observed pulsation spectrum is expected to be) C-D diagram ~1 μHz accuracy on Δν and δν 02 will help to get better stellar mass & age α MLT =1.8; no overshooting Several Y ini

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse Conclusion & Prospects Conclusion: HD 97658b is a key transiting super-Earth Future observations: Coming: 3 more transits with Spitzer (PI D. Dragomir) GAIA  very accurate distance, luminosity, and stellar radius (but not sufficient to have Y ini and α MLT ) CHEOPS & TESS: Accurate planet radius in visible Asteroseismic observations to improve the stellar mass and age  we need PLATO ! HD 97658b is an intermediate density super-Earth  composition of such objects ? (internal composition ? Volatiles ? Thick atmosphere ?) Orbiting a bright star (V=7.7,K=5.7)  very important for future atmospheric characterization (JWST,…) Formation of such a planet ? Characterizing the host star (mass, radius, age) is essential