A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Exotic physics with Neutrino Telescopes 2013, April 5, 2013.

Slides:



Advertisements
Similar presentations
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia E. Akhmedov, M. Maltoni,
Advertisements

Oscillation formalism
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy ICTP, December 11, 2012.
Teppei Katori, Indiana University1 PRD74(2006) Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia.
Particle Physics and Astrophysics with Large Neutrino Detectors Pennsylvania State University Irina Mocioiu.
Leptonic CP Violation in Neutrino Oscillations Shun Zhou KTH Royal Institute of Technology, Stockholm in collaboration with T. Ohlsson & H. Zhang Phys.
MiniBooNE: (Anti)Neutrino Appearance and Disappeareance Results SUSY11 01 Sep, 2011 Warren Huelsnitz, LANL 1.
11-September-2005 C2CR2005, Prague 1 Super-Kamiokande Atmospheric Neutrino Results Kimihiro Okumura ICRR Univ. of Tokyo ( 11-September-2005.
Super-Kamiokande Introduction Contained events and upward muons Updated results Oscillation analysis with a 3D flux Multi-ring events  0 /  ratio 3 decay.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Neutrino oscillations and non- standard neutrino-matter interactions (NSI) Cecilia Lunardini INT & UW department of Physics, Seattle A.Friedland, C.L.
Sinergia strategy meeting of Swiss neutrino groups Mark A. Rayner – Université de Genève 10 th July 2014, Bern Hyper-Kamiokande 1 – 2 km detector Hyper-Kamiokande.
CP-phase dependence of neutrino oscillation probability in matter 梅 (ume) 田 (da) 義 (yoshi) 章 (aki) with Lin Guey-Lin ( 林 貴林 ) National Chiao-Tung University.
November 19, 2005 Sergio Palomares-Ruiz Physics of Atmospheric Neutrinos: Perspectives for the Future Topical Workshop on Physics at Henderson DUSEL Fort.
Atmospheric Neutrinos
Shoei NAKAYAMA (ICRR) for Super-Kamiokande Collaboration December 9, RCCN International Workshop Effect of solar terms to  23 determination in.
TeVPA 2012 TIFR Mumbai, India Dec 10-14, 2012 Walter Winter Universität Würzburg Neutrino physics with IceCube DeepCore-PINGU … and comparison with alternatives.
Probing the Octant of  23 with very long baseline neutrino oscillation experiments G.-L. Lin National Chiao-Tung U. Taiwan CYCU Oct Work done.
5/1/20110 SciBooNE and MiniBooNE Kendall Mahn TRIUMF For the SciBooNE and MiniBooNE collaborations A search for   disappearance with:
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Caren Hagner CSTS Saclay Present And Near Future of θ 13 & CPV in Neutrino Experiments Caren Hagner Universität Hamburg Neutrino Mixing and.
Neutrino oscillation physics II Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
Present status of oscillation studies by atmospheric neutrino experiments ν μ → ν τ 2 flavor oscillations 3 flavor analysis Non-standard explanations Search.
February 23, 2005Neutrino Telescopes, Venice Comparing Solar and KamLAND Data Comparing Solar and KamLAND Data Carlos Pena Garay IAS, Princeton ~
Resolving neutrino parameter degeneracy 3rd International Workshop on a Far Detector in Korea for the J-PARC Neutrino Beam Sep. 30 and Oct , Univ.
The Earth Matter Effect in the T2KK Experiment Ken-ichi Senda Grad. Univ. for Adv. Studies.
Sterile Neutrino Oscillations and CP-Violation Implications for MiniBooNE NuFact’07 Okayama, Japan Georgia Karagiorgi, Columbia University August 10, 2007.
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
The NOvA Experiment Ji Liu On behalf of the NOvA collaboration College of William and Mary APS April Meeting April 1, 2012.
Bruno Pontecorvo Pontecorvo Prize is very special for us: All the important works done by Super- Kamiokande point back to Bruno Pontecorvo – 1957 First.
Studies on PINGU’s Sensitivity to the Neutrino mass Hierarchy P. Berghaus, H.P. Bretz, A. Groß, A. Kappes, J. Leute, S. Odrowski, E. Resconi, R. Shanidze.
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia E. Akhmedov, M. Maltoni,
Impact of large  13 on long- baseline measurements at PINGU PINGU Workshop Erlangen university May 5, 2012 Walter Winter Universität Würzburg TexPoint.
Long Baseline Neutrino Beams and Large Detectors Nicholas P. Samios Istanbul, Turkey October 27, 2008.
Counting Electrons to Measure the Neutrino Mass Hierarchy J. Brunner 17/04/2013 APC.
CP violation in the neutrino sector Lecture 3: Matter effects in neutrino oscillations, extrinsic CP violation Walter Winter Nikhef, Amsterdam,
Tests of non-standard neutrino interactions (NSI) Cecilia Lunardini Institute for Nuclear Theory University of Washington, Seattle.
Search for Electron Neutrino Appearance in MINOS Mhair Orchanian California Institute of Technology On behalf of the MINOS Collaboration DPF 2011 Meeting.
MEASUREMENT OF THE NEUTRINO MASS HIERARCHY IN THE DEEP SEA J. Brunner.
Mass Hierarchy Study with MINOS Far Detector Atmospheric Neutrinos Xinjie Qiu 1, Andy Blake 2, Luke A. Corwin 3, Alec Habig 4, Stuart Mufso 3, Stan Wojcicki.
ORCA simulations - First steps J. Brunner 06/09/2012.
S.P.Mikheyev INR RAS1 ``Mesonium and antimesonium’’ Zh. Eksp.Teor. Fiz. 33, 549 (1957) [Sov. Phys. JETP 6, 429 (1957)] translation B. Pontecorvo.
S.P.Mikheyev (INR RAS) S.P.Mikheyev (INR RAS)2  Introduction.  Vacuum oscillations.  Oscillations in matter.  Adiabatic conversion.  Graphical.
Search for Sterile Neutrino Oscillations with MiniBooNE
The quest for  13 : Parameter space and performance indicators Proton Driver General Meeting At Fermilab April 27, 2005 Walter Winter Institute for Advanced.
Neutrino Oscillations at Super-Kamiokande Soo-Bong Kim (Seoul National University)
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
1 Luca Stanco, INFN-Padova (for the OPERA collaboration) Search for sterile neutrinos at Long-BL The present scenario and the “sterile” issue at 1 eV mass.
Recent Results from Super-K Kate Scholberg, Duke University June 7, 2005 Delphi, Greece.
CP phase and mass hierarchy Ken-ichi Senda Graduate University for Advanced Studies (SOKENDAI) &KEK This talk is based on K. Hagiwara, N. Okamura, KS PLB.
Tests of Lorentz Invariance using Atmospheric Neutrinos and AMANDA-II John Kelley for the IceCube Collaboration University of Wisconsin, Madison Workshop.
ORCA from ANTARES modules J. Brunner 06/10/2012. Detector Hexagonal layout a la IceCube 37 lines, distance 20m 25 ANTARES storeys  z = 4.5m Equipped.
1 Study of physics impacts of putting a far detector in Korea with GLoBES - work in progress - Eun-Ju Jeon Seoul National University Nov. 18, 2005 International.
Solar Neutrino Results from SNO
September 10, 2002M. Fechner1 Energy reconstruction in quasi elastic events unfolding physics and detector effects M. Fechner, Ecole Normale Supérieure.
Takaaki Kajita ICRR, Univ. of Tokyo KIAS, Seoul, Nov Fig: Senda NP-4.
Low energy option for KM3NeT Phase 1? KM3NeT-ORCA (Oscillation Research with Cosmics in the Abyss) P. Coyle, Erlangen 23 June 2012.
Hiroyuki Sekiya ICHEP2012 Jul 5 The Hyper-Kamiokande Experiment -Neutrino Physics Potentials- ICHEP2012 July Hiroyuki Sekiya ICRR,
T2K Experiment Results & Prospects Alfons Weber University of Oxford & STFC/RAL For the T2K Collaboration.
Neutrino Physics Now and in Near Future Hisakazu Minakata U. Sao Paulo.
A. Y. Smirnov SNO: establishing flavor conversion of the Solar neutrinos BOREXINO direct measurement of the pp-neutrinos 2004 – KAMLAND.
Enhancement of CP Violating terms
SOLAR ATMOSPHERE NEUTRINOS
Measurement of the Neutrino Mass hierarchy in the deep sea
Neutrino oscillations with the T2K experiment
SOLAR ATMOSPHERE NEUTRINOS
T2KK Sensitivity of Resolving q23 Octant Degeneracy
Determination of Neutrino Mass Hierarchy at an Intermediate Baseline
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Presentation transcript:

A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Exotic physics with Neutrino Telescopes 2013, April 5, 2013

ANTARES Ice Cube Precision IceCube Next Generation Upgrade Oscillation Research with Cosmics with the Abyss

Oscillation effects and Oscillograms Nonstandard interactions Hierarchy, 2-3mixing, CP Sterile neutrinos

P. Lipari, T. Ohlsson M. Chizhov, M. Maris, S.Petcov T. Kajita and physics of oscillations

  e mass  m 2 31  m 2 21 Normal mass hierarchy |U e3 | 2 |U  3 | 2 |U  3 | 2 |U e1 | 2 |U e2 | 2 tan   23 = |U  3 | 2 / |U  3 | 2 sin   13 = |U e3 | 2 tan   12 = |U e2 | 2 / |U e1 | 2  m 2 31 = m m 2 1  m 2 21 = m m 2 1 Mixing parameters f = U PMNS mass U PMNS = U 23 I  U 13 I  U 12 flavor Mixing matrix: e   = U PMNS

  e 2m 1m 3m 1-2 resonance 1-3 resonance Density (energy) increase  Normal mass hierarchy, neutrinos

  e 2m 1m 3m 1-2 resonance Density increase  Inverted mass hierarchy, neutrinos

  e 2m 1m 3m Density increase  Normal mass hierarchy, antineutrinos

  e 2m 1m 3m 1-3 resonance Density increase  Inverted mass hierarchy, antineutrinos

core mantle flavor-to-flavor transitions Oscillations in multilayer medium  - nadir angle core-crossing trajectory  -zenith angle  = 33 o  - accelerator - atmospheric - cosmic neutrinos Applications: 9

Oscillations in matter with nearly constant density (mantle) Parametric enhancement of oscillations Mantle – core - mantle Interference constant density + corrections Peaks due to resonance enhancement of oscillations Low energies: adiabatic approximation Parametric resonance  parametric peaks Smallness of  13 and  m 21 2 /  m 32 2 in the first approximation: overlap of two 2 –patterns due to 1-2 and 1-3 mixings interference of modes CP-interference interference (sub-leading effect) Two layer transitions vacuum-matter (atmosphere-Earth)

B = (sin 2  m, 0, cos2  m ) 2  l m  = (B x P) Equation of motion (= spin in magnetic field)  = 2  t/ l m Phase of oscillations P ee = e + e = P Z + 1/2 = cos 2  Z /2 Probability to find e e , B P x z d  P dt y where ``magnetic field’’ vector: P = (Re e + , Im e + , e + e - 1/2)

mantle

F (E) F 0 (E) E/E R thin layer thick layer k = 1 k = 10 Small mixing sin 2 2  = 0.08 sin 2 2  m

Enhancement associated to certain conditions for the phase of oscillations Another way of getting strong transition No large vacuum mixing and no matter enhancement of mixing or resonance conversion ``Castle wall profile’’ V     =   =  V. Ermilova V. Tsarev, V. Chechin E. Akhmedov P. Krastev, A.S., Q. Y. Liu, S.T. Petcov, M. Chizhov mm mm   m   m of oscillations 18

  =   =  distance c 1 = c 2 = 0 General case: certain correlation between the phases and mixing angles E. Kh. Akhmedov, s  c  cos2   m  + s  c  cos2   m  = 0 s i = sin   i, c i = cos  i, (i = 1,2) half-phases transition probability

core mantle mantle core mantle

core mantle

MSW-resonance peaks 1-2 frequency 1 - P ee Parametric peak 1-2 frequency MSW-resonance peaks 1-3 frequency Parametric ridges 1-3 frequency  excluded

E. Kh. Akhmedov, S.Razzaque, A.S. Oscillations test dispersion relation for neutrinos NH, neutrinos

e e   f  U 23 I  I  = diag (1, 1, e i  ) e     e   ~ Propagation basis ~ ~ ~ ~ projection propagation A(    ) = cos  23  A e2 e i  + sin  23 A e3 A e3 A e2 CP-violation and 2-3 mixing are excluded from dynamics of propagation CP appears in projection only For instance: For E > 0.1 GeV A 22 A 33 A 23

P( e   ) = |cos  23  A e2 e i  + sin  23 A e3 | 2 ``atmospheric’’ amplitude``solar’’ amplitude Due to specific form of matter potential matrix (only V ee = 0) dependence on  and  23  is explicit P( e   )  = |A e2 A e3 | cos (  -  ) P(    )  = - |A e2 A e3 | cos  cos  P(    )  = - |A e2 A e3 | sin  sin  For maximal 2-3 mixing  = arg (A e2 * A e3 )  = 0

 A S = 0 P int = 0 - solar magic lines (  +  ) =  /2 + 2  k  (E, L) = -  +  /2 +  k  A A = 0 - interference phase condition depends on  P int = 2s 23 c 23 |A e2 ||A e3 |cos(  +  ) P( e   ) = c 23 2 |A e2 | 2 + s 23 2 |A e3 | 2 + 2s 23 c 23 |A e2 ||A e3 |cos(  +  ) Explicitly  = arg (A S A A *) Dependence on  disappears, interference term is zero if V. Barger, D. Marfatia, K Whisnant P. Huber, W. Winter, A.S. - atmospheric magic lines 31

 A S = 0 P int = 0  =  /2 +  k  A A = 0 interference phase does not depends on  For    channel - The survival probabilities is CP-even functions of  - no CP-violation - dependences on phases factorize P int ~ 2s 23 c 23 |A S ||A A |cos  cos  Dependence on  disappears Form the phase line grid

Grid (domains) does not change with  Int. phase line moves with  -change PP

PP

PP

E, GeV MINOS T2K CNGS NuFac T2KK IceCube LENF IC Deep Core NOvA PINGU-1 e      contours of constant oscillation probability in energy- nadir (or zenith) angle plane HyperK OK for CP ICAL, INO LAr

  e 2 1 MASS  m 2 23  m 2 32  m 2 21 Inverted mass hierarchy (ordering 3-1-2) Normal mass hierarchy (ordering 1-2-3) - For non-zero  CP the antineutrino spectrum is different (distribution of the   and   - flavors in 1  and 2 ) - Mass states are marked by amount of the electron flavor with cyclic permutation FLAVOR

Inversion of mass hierarchy is related to neutrino – antineutrino transition In matter V  -V neutrino  antineutrino inversion of mass hierarchy 2EV  m 2  m 2  -  m 2 Under simultaneous transition NH  IH nu  antinu In 2 approximation is invariant Mixing does not change Moduli of the oscillation phase does not change P NH = P IH P IH = P NH Hierarchy asymmetries for neutrinos and antineutrinos have opposite signs

normal  inverted neutrino  antineutrino For 2 system e - e e -   25

Estimator of sensitivity S – asymmetry |S| - significance Quick estimation of total significance S tot ~ s n 1/2 S =

E - E  E + m N E h - m N E  + E h y = = sin 2  = fraction of total energy transferred into hadrons 1. Separation of neutrino and antineutrino signals N ~ 1, N ~ (1 - y) 2 for each bin y – distribution allows to extract fractions of nu and nubar 2. Better reconstruction of the neutrino direction reduction of the kinematic smearing x y m N (E  + m N ) 2 E E  selecting events with small y reduces possible angles between and  3. Better control over systematics 4. Reduction of degenerasy Mathieu Ribordy, A. Y.S., i [hep-ph] and sensitivity

with experimental smearing  E  = (0.7 E ) 1/2  0 = 20 o y-integrated bad nu – nubar separation bad angular resolution

sin 2  32, fit = 0.50 sin 2  32, true = 0.42 Future measurements – improve accuracy of determination of the angle Effect has the same sign Regions of strong effects of the angle and hierarchy do not overlap significantly Large effect is in he region of small number of events

Integrating over the zenith angle Energy dependence of the cascade events S. Razzque and A.Y.S., in preparation

Shape does not change the amplitude changes Large significance at low energies

  e mass  m 2 31  m  m 2 41 s P ~ 4|U e4 | 2 |U  4 | 2 restricted by short baseline exp. BUGEY, CHOOZ, CDHS, NOMAD LSND/MiniBooNE: vacuum oscillations  m 41 2 ~ 1 eV 2 U  4 = 0.2 P ~ 4|U e4 | 2 (1 - |U e4 | 2 ) For reactor and source experiments - additional radiation in the universe - bound from LSS?

H Nunokawa O L G Peres R Zukanovich-Funchal Phys. Lett B562 (2003) 279 S Choubey JHEP 0712 (2007) 014  - s oscillations with  m 2 ~ 1 eV 2 are enhanced in matter of the Earth in energy range 0.5 – few TeV IceCube This distorts the energy spectrum and zenith angle distribution of the atmospheric muon neutrinos S Razzaque and AYS, , [hep-ph]

antineutrinos MSW resonance dip neutrinos Effect of phase shift for the     oscillations due to matter effects

For different mixing schemes Varying |U  0 | 2 In general Zenith angle distribution depends on admixture of  in 4 th mass state < 3% stat. error

Shift of phase quantifies effect of sterile neutrino S Razzaque, A Y S arXiv:

  e mass  m 2 31  m  m 2 dip s - additional radiation in the Universe if mixed in 3 Very light sterile neutrino - solar neutrino data Motivated by no problem with LSS (bound on neutrino mass) m 0 ~ eV can be tested in atmospheric neutrinos with DC IceCube sin 2 2  ~ sin 2 2  ~ DE scale? M 2 M Planck M ~ TeV

 ’ –  s resonanceE R ~ 12 GeV    s resonance peak at 6-8 GeV IceCube Deep Core Interplay of    s and    oscillations Phase shift and decrease of amplitude of oscillations: P. De Holanda, A. S. difference with sterile ~ 20 % suppression of rate of events in the muon energy bins 5 – 15 GeV

Smearing 1 Smearing 2 No smearing

H = U(  23 ) U*(  23 ) + R      ’ 2EV d  m 31 2 R 0 =  m E V d  -potential due to scattering on d-quarks V NSI = V d [4   2 +  ’ 2 ] 0.5  m E V NSI ~ resonance, strong NSI effect  ,  ’ ~ 0.01E R ~ 60 – 100 GeV

P(    ) Arman Esmaili, AYS resonance

P(    )

T. Ohlsson, He Zhang, Shun Zhou, [hep-ph] (    )

- mass hierarchy - deviation of 2-3 mixing from maximal one - CP violation Probe of nature of neutrino mass (soft-hard); Neutrino images of the Earth Atmospheric vs. LBL - sterile neutrinos - tests of fundamental symmetries - non-standard interactions

Neutrino fluxes averaged over all directions M. Honda et al astro-ph/ Flavor ratios Charge asymmetries

Vertically upgoing atmospheric neutrinos taking into account effects of violation of Lorentz invariance  c/c = maximal mixing M. C. Gonzalez-Garcia F. Halzen M. Maltoni, Hep-ph/ Violation of Lorentz invariance: different asymptotic (E  infty) values of velocity of two neutrino components 70

Radiography of the Earth core and mantle M. C. Gonzalez-Garcia F. Halzen, M. Maltoni, H. Tanaka arXiv: [hep-ph] Zhenith angle distribution of events in IceCube for different energy thresholds for PREM model Ratio of zenith angle distribution of expected events for PREM model and for homogeneous Earth matter distribution (stat. error) 71

Flavor ratio decrease with energy and deviates from  1.6 Two components: - directly produced by e  and  e - from invisible muon decay Seasonal variations, variations with solar activity Background for diffuse SN fluxes FLUKA Enlarging the energy range weaker screening effect O. Peres, A.S, [arXiv: ] 61

e e   f  U 23 I  U 13 I  = diag (1, 1, e i  ) e     e   Propagation basis projection propagation For sub-subGeV events 3  2

Effect of 2-3 mixing Effect of 1-3 mixing and CP-phase O. Peres, A.S 62

Effects on neutrinos from invisible muon decays        e Muons with E < 150 MeV: no Cherenkov lights. They stop in a detector and decays: Atmospheric neutrinos with E ~ 150 – 300 MeV produce (in the detector and around it) Ratio of total number of events as functions of 2-3 mixing for different values of    and  O. Peres, A.S 63

Energy spectrum of e-like events in Hyper-Kamiokande (540 kt, 4 years) for two Values of CP-phase O. Peres, A.S ~ 10 – 15 % effects Sensitivity to 2-3 mixing 64

Energy spectrum of e-like events in Hyper-Kamiokande (540 kt, 4 years) for two Values of CP-phase O. Peres, A.S ~ % effects Sensitivity to 13-mixing and  -phase 65

Measuring oscillograms with atmospheric neutrinos E > GeV with sensitivity to the resonance region Huge Atmospheric Neutrino Detector Better angular and energy resolution Spacing of PMT ? V = MGt Should we reconsider a possibility to use atmospheric neutrinos? develop new techniques to detect atmospheric neutrinos with low threshold in huge volumes? 0.5 GeV

a). Resonance in the mantle b). Resonance in the core c). Parametric ridge A d). Parametric ridge B e). Parametric ridge C f). Saddle point a). b). c). e). d). f).

Y. Suzuki - Proton decay searches - Supernova neutrinos - Solar neutrinos Totally Immersible Tank Assaying Nucleon Decay TITAND-II: 2 modules: 4.4 Mt (200 SK) Under sea deeper than 100 m Cost of 1 module 420 M $ Modular structure

Y. Suzuki Totally Immersible Tank Assaying Nucleon Decay Module: - 4 units, one unit: tank 85m X 85 m X 105 m - mass of module 3 Mt, fiducial volume 2.2 Mt - photosensors 20% coverage ( cm PMT) TITAND-II: 2 modules: 4.4 Mt (200 SK)

Contours of constant oscillation probability in energy- nadir (or zenith) angle plane P. Lipari, T. Ohlsson M. Chizhov, M. Maris, S.Petcov T. Kajita e      Michele Maltoni 1 - P ee excluded

LSND MiniBooNE Gallex,GNO Double-Chooz SAGE G.Mention et al, arXiv:  m 41 2 = eV 2

sin 2 2  ~ m 0 ~ eV M 2 M Planck m 0 = M ~ TeV mixing h v EW M  ~ sin 2 2  ~ v EW M  ~ h = 0.1

inner core outer core upper mantle transition zone crust lower mantle (phase transitions in silicate minerals) liquid solid Fe Si PREM model A.M. Dziewonski D.L Anderson 1981 R e = 6371 km

of oscillograms 1. One MSW peak in the mantle domain 2. Three parametric peaks (ridges) in the core domain 3. MSW peak in the core domain 1-3 mixing: 1-2 mixing: 1. Three MSW peaks in the mantle domain 2. One (or 2) parametric peak (ridges) in the core domain 1D  2D - structuresregular behavior

solar magic lines atmospheric magic lines relative phase lines Regions of different sign of  P Interconnection of lines due to level crossing factorization is not valid

P. de Holanda, A.S. Phys. Rev. D69 (2004) hep-ph Q Ar exp <Q Ar LMA / SNU> 3.1 SNU No turn up of the spectrum in SK Light sterile neutrinoR  =  m 01 2 /  m 21 2 << 1  - mixing angle of sterile- active neutrinos  dip in survival probability Motivation for the low energy solar neutrino experiments BOREXINO, KamLAND …

sin 2 2  = (red), (blue) SK-I SK-III SNO-LETA R  = 0.2  m 2 = eV 2 SNO-LETA Borexino P. De Holanda, A.S.

Earth matter effects Flavor evolution of neutrino states is highly adiabatic Strong suppression of the neutronization peak: e  3 NH Adiabaticity is broken in shock front if the relative width of the front:  R/R <  10 km Shock wave effect if larger – no shock wave effect: probe of the width of front Normal mass hierarchy: in the antineutrino channel only Inverted mass hierarchy: in the neutrino channel only If the earth matter effect is observed for antineutrinos NH is established! Permutation of the electron and non-electron neutrino spectra

Energy range: 0.01 – 10 5 GeV Baselines: 0 – km Matter effects: 3 – 15 g/cm 3 Flavor content nue, numu Lepton number nu - antinu Discovery of neutrino oscillations Measurements of 2-3 mixing and mass splitting which is not completely explored and largely unused Bounds on new physics - sterile neutrinos - non-standards interaction -violation of fundamental symmetries, CPT which change with energy and zenith angle

PINGU: 18, 20, 25 ? new strings (~1000 DOMs) in DeepCore volume IceCube : 86 strings (x 60 DOM) 100 GeV threshold Gton volume Existing IceCube strings Existing DeepCore strings New PINGU strings D. Cowen Deep Core IC : - 8 more strings (480 DOMs) - 10 GeV threshold - 30 Mton volume Digital Optical Module

Three grids of lines: Solar magic lines Atmospheric magic lines Interference phase lines

E. Kh Akhmedov M. Maltoni A.Y.S. JHEP 05, (2007) 077 [hep-ph/ ] JHEP 06 (2008) 072 [arXiv: ] PRL 95 (2005) arXiv: unpublished, see M Maltoni talks E. Kh Akhmedov, S Razzaque, A.S. in preparation A.Y.S., hep-ph/ E Kh Akhmedov, A Dighe, P. Lipari, A Y. Smirnov, Nucl. Phys. B542 (1999) 3-30 hep-ph/ Uncertainties of original fluxes Flavor identification Reconstruction of direction Energy resolution Statistics Developments of new detection methods? TITAND? Y. Suzuki High statistics solve the problems

Integration averaging averaging and smoothing effects reconstruction of neutrino energy and direction Original fluxes identification of flavor different flavors: e  and  Detection neutrinos and antineutrinos Screening factors (1 - r s 23 2 ) Reduces CP- asymmetry (1 -  e ) (1 –   )

Reduces the depth of oscillations interference P( e   ) = s 23 2 |A e3 | 2 Modifies phase  = arg (A 22 A 33 *) E Kh Akhmedov, S Razzaque, A. Y.S. Reduces the average probability P(    ) = 1 – ½ sin 2 2  23 - s 23 4 |A e3 | 2 + ½ sin 2 2  23 (1 - |A e3 | 2 ) cos  P(    ) = ½ sin 2 2  23 - s 23 2 c 23 2 |A e3 | 2 - ½ sin 2 2  23 (1 - |A e3 | 2 ) cos  for hierarchy determination ½ ½

P A = |A e3 | 2 N e IH - N e NH ~ (P A - P A ) (1 –   ) [r s (1 –  e )/(1 -   )] Flavor suppression (screening factors) Neutrino - antineutrino factor unavoidable CP asymm etry can be avoided N  IH - N  NH ~ (P  - P  ) (1 –   ) - r -1 (1 –  e ) (P e  - P e  )] Triple suppression   = (   )/(   )

E. Kh Akhmedov M. Maltoni A.Y.S. JHEP 05, (2007) 077 [hep-ph/ ] JHEP 06 (2008) 072 [arXiv: ] PRL 95 (2005) [arXiv: ] unpublished, see M Maltoni talks. E. Kh Akhmedov, S Razzaque, A. Y. Smirnov JHEP 1302 (2013) 0.82, [ [hep-ph]] A.Y.S., hep-ph/ E Kh Akhmedov, A Dighe, P. Lipari, A Y. Smirnov, Nucl. Phys. B542 (1999) 3-30 hep-ph/ Flavor identification Reconstruction of direction Energy resolution + mild technological developments ? TITAND? Y. Suzuki M. Ribordy and A.Y. Smirnov, [hep-ph] PINGU, ORCA Uncertainties of original fluxes Statistics

e   2 nd and 3 rd parametric peaks MSW resonance in core MSW resonance in mantle

neutrinos antineutrinos NH – solid IH – dashed x =  - blue x = e - red

excluded

With and without NSI T. Ohlsson, He Zhang, Shun Zhou, [hep-ph] ( e   )

 A S = 0  - true (experimental) value of phase  f - fit value  P = P(  ) - P(  f )  P = 0 (along the magic lines) (  +  ) = - (  +  f ) + 2  k  (E, L) = - (  +  f )/2 +  k = P int (  ) - P int (  f )  A A = 0 int. phase condition depends on  Interference term:  P = 2 s 23 c 23 |A S | |A A | [ cos(  +  ) - cos (  +  f )] For e   channel:

| Effects of 1-3 mixing and sterile neutrino as compared with 2 - mixing case

E th = 0.1 TeV S = N(osc.)/N(no osc.)

Normal mass hierarchy in the flavor block; m 0 ~ 1 eV |U e4 | 2 |U  | 2 are large enough, so that level crossings are adiabatic Three new level crossings V e - V s = 2 G F (n e – n n /2) Resonance in the antineutrino cannel

- dip - wiggles

 + n   + h muon track cascade Measurements EEhEEh Reconstruction E = E  + E h E h E      ~ 10 5 events/year E. Akhmedov, S. Razzaque, A. Y. S. arXiv:  V eff = 14.6 [log(E /GeV )] 1.8 Mt Effective volume