Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, 14. - 18. März 2016 1 Outline: CBM-ToF requirements What is an (M)RPC? Tof wall arrangements Ceramics RPC and.

Slides:



Advertisements
Similar presentations
CBM Calorimeter System CBM collaboration meeting, October 2008 I.Korolko(ITEP, Moscow)
Advertisements

1 Geometry layout studies of the RICH detector in the CBM experiment Elena Belolaptikova Dr. Claudia Hoehne Moscow State Institute of Radioengineering,
Wang Yi, Tsinghua University SoLID collaboration meeting, Status of MRPC-TOF 1 Wang Yi Department of Engineering Physics Tsinghua University,
Status of MRPC-TOF Wang Yi Department of Engineering Physics Tsinghua University, Beijing, China 1.
Pair Spectrometer Design Optimization Pair Spectrometer Design Optimization A. Somov, Jefferson Lab GlueX Collaboration Meeting September
Preparation of MTD production Yongjie Sun Center of Particle Physics and Technology University of Science and Technology of China.
Open Charm Everard CORDIER (Heidelberg) Grako meeting HD, April 28, 2006Everard Cordier.
Particle Identification in CBM ● Geometry and acceptance at 25 AGeV ● Hadron identification - TOF performance - Matching to the Silicon Tracker ● Summary.
New MRPC prototypes developed in Tsinghua Unversity Huangshan Chen (Tsinghua Unversity)
Mauro Raggi Status report on the new charged hodoscope for P326 Mauro Raggi for the HODO working group Perugia – Firenze 07/09/2005.
November 5, 2004V.Ammosov ITEP-Moscow, Russian CBM meeting 1 IHEP possible participation in CBM TOF system Vladimir Ammosov Institute for High Energy Physics.
24/03/2011P.-A. Loizeau – Univ. Heidelberg The CBM Time of Flight wall electronic readout chain Pierre-Alain Loizeau PI – Uni Heidelberg DPG 2011, Münster.
15 th CBM collaboration meeting, GSI, Darmstadt, Germany, April 12-16, 2010Wang Yi, Tsinghua University R&D status of low resistive glass and high rate.
Status of Projectile Spectator Detector A.Kurepin (Institute for Nuclear Research, Moscow) I. Introduction to PSD. II. Conception and design. III. Development.
CBM-Meeting, Darmstadt A.Schüttauf for the FOPI- collaboration FOPIs new MMRPC-barrel.
RPC R&D status in Bucharest (JRA12-I3HP) Mihai Petrovici - CBM-Meeting, GSI, March 1,2006 Short history SMSMGRPC – Glaverbel Glass Prototype –Construction.
Third workshop on hadron physics in ChinaWang Yi, Tsinghua University A conceptional design of SOLID-TOF Outline: Development of low resistive glass and.
RPC detection rate capability ≈ 1/ρ Float-Glass ( Ω-cm) RPC rate capability < Bakelite( Ω-cm) one. New kind of doped glass was developed.
Prototypes of high rate MRPC for CBM TOF Jingbo Wang Department of Engineering Physics, Tsinghua University, Beijing, China RPC-2010-Darmstadt, Germany.
G. Musulmanbekov, K. Gudima, D.Dryablov, V.Geger, E.Litvinenko, V.Voronyuk, M.Kapishin, A.Zinchenko, V.Vasendina Physics Priorities at NICA/MPD.
Ingo DeppnerDPG-Frühjahrstagung, Mainz, A Multistrip-MRPC Prototype for the CBM Time-of-Flight Wall Outline: CBM-ToF requirements Conceptional.
STAR regional meeting, October UniversityWang Yi, Tsinghua University New MRPC R&D in Tsinghua University Outline: Introduction of MRPC.
A.N.Sissakian, A.S.Sorin Very High Multiplicity Physics Seventh International Workshop JINR, Dubna, September 18, 2007 Status of the project NICA/MPD at.
Mariana Petris, CBM Collaboration Meeting, October 13-18, 2008, Dubna Mariana Petris, NIPNE - Bucharest C B M In-Beam Test Results of the Pestov Glass.
Proposal for large-area high- rate Time-of-Flight and Muon Telescope Detector with MRPC technology for EIC Zhangbu Xu (BNL) BNL, Rice, UCLA, Tsinghua,
Report on beam test results of high-rate MRPCs Jingbo Wang Department of Engineering Physics, Tsinghua University, Beijing, China.
18/03/2010 DPG Bonn – March Session: HK 48 A demonstrator for the CBM Time of Flight wall electronic readout chain Pierre-Alain Loizeau PI – Uni.
Mariana Petris, NIPNE Bucharest CBM Meeting, March 9 -12, 2005 HIGH COUNTING RATE TRANSITION RADIATION DETECTOR Bucharest Prototype In Beam Tests.
RPC upgrade for the HADES Tracking: MDC e -,e + identification with RICH- TOF/PreShower  0.4 GeV/c TOF is not sufficient- Pre-Shower p,  identification.
长读出条 MRPC 性能研究 孙勇杰 Key Laboratory of Technology of Particle Detection and Electronics, USTC-IHEP, CAS Center of Particle Physics and Technology, USTC.
Update on DHCAL and RPC progress Lei Xia ANL - HEP.
CBM Collaboration Meeting, GSI Experimental features of strip-RPCs Motivation FOPIs Multistrip-Multigap-RPCs Results Conclusions.
RPC Design Studies Gabriel Stoicea, NIPNE-HH, Bucharest CBM Software Week GSI-Darmstadt May 10, 2004.
STS simulations: Layout, digitizers, performance Radoslaw Karabowicz GSI.
Jonathan BouchetBerkeley School on Collective Dynamics 1 Performance of the Silicon Strip Detector of the STAR Experiment Jonathan Bouchet Subatech STAR.
Ingo DeppnerRPC 2012 Workshop, INFN, Feb A Mutistrip MRPC prototype for the CBM Time-of Flight wall Outline: Motivation / CBM-ToF Requirements.
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
ITEP participation to the CBM TOF project ITEP ALICE - TOF group CBM – Russia meeting at ITEP, Nov 5 th, 2004.
Beam Test of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger, A.
Marcello Abbrescia RPCs for CMS during Phase II RPC rate capability M. Abbrescia, The dynamic behaviour of Resistive Plate Chambers, NIM A 533 (2004) 7–10.
Christian Lippmann (ALICE TRD), DPG-Tagung Köln Position Resolution, Electron Identification and Transition Radiation Spectra with Prototypes.
XIII workshop on RPC and related detectors. GENT university, Belgium, Feb Wang Yi, Tsinghua University 1 Development and test of real-size.
CBM-TOF-FEE Jochen Frühauf, GSI Picosecond-TDC-Meeting.
Prof. Peter Mustermann | Institut xxxxx | Seite 1 Dr. Lothar Naumann | Institute of Radiation Physics | Investigation of ceramic.
Quality Assurance procedures for the construction of ALICE TOF detector VIIIth Workshop on Resistive Plate Chambers and Related Detectors October.
SDHCAL. outline  SDHCAL concept, validation and construction  Test Beam and technological prototype performance  Perspectives and Conclusion  SDHCAL.
Workshop on STAR upgrade. Sep th, 2015, USTC, Hefei Wang Yi, Tsinghua University 1 Status of high rate MRPC for CBM-TOF Outline: Introduction of.
Ingo DeppnerSTAR Regional Meeting at USTC Hefei Ingo Deppner Physikalisches Institut der Uni. Heidelberg CBM TOF prototypes STAR Regional.
NSS2006Shengli Huang1 The Time of Flight Detector Upgrade at PHENIX Shengli Huang PHENIX Collaboration Outlines: 1.Physics motivations 2.Multi-gap Resistive.
XI Workshop on Resistive Plate Chambers and Related Detectors, INFN, 5-10 February, Aging test of high rate MRPC Wang Yi Department of Engineering.
Beam detectors in Au+Au run and future developments - Results of Aug 2012 Au+Au test – radiation damage - scCVD diamond detector with strip metalization.
eTOF - status and plan CBM-STAR joint Workshop Outline Introduction
High rate time of flight system
– a CBM full system test-setup at GSI
Status of BESIII and upgrade of BESIII
Performance studies of a single HV stack MRPC prototype for CBM
Department of Engineering Physics, Tsinghua University, Beijing, China
Performance of the HADES-TOF RPC wall in a Au-Au beam
Results achieved so far to improve the RPC rate capability
Performance of timing-RPC prototypes with relativistic heavy ions
Start Detector for pion experiments
A heavy-ion experiment at the future facility at GSI
Multigap Resistive Plate Chambers (MRPC)
Conceptual design of TOF and beam test results
I. Vassiliev, V. Akishina, I.Kisel and
Performance of a Multigap RPC prototype for the LHCb Muon System
Muon Detector Jiawen ZHANG 16 September 2002.
GEANT Simulations and Track Reconstruction
Pierre-Alain Loizeau and David Emschermann for the CBM collaboration
Perspectives on strangeness physics with the CBM experiment at FAIR
Presentation transcript:

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Outline: CBM-ToF requirements What is an (M)RPC? Tof wall arrangements Ceramics RPC and the central region of the ToF wall Low resistive glass as resistive electrodes for MRPCs Single stack vs. double stack Performance study from test beam time at GSI and SPS Time Table Summary / Next steps Ingo Deppner for the CBM-TOF Group Physikalisches Institut der Uni. Heidelberg DPG – Frühjahrstagung 2016 The CBM Time-of-Flight wall

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Introduction 80  120  1 ns RPC twisted pair cabe feed through gas box TRD TOF ECAL RICH Dipole magnet PSD MVD & STS MUCH CBM talks: HK7.1, HK7.3, HK7.4, HK7.5, HK8.3, HK8.4, HK10.5, HK14.1, HK14.2, HK14.3, HK14.7, HK15.1, HK15.2, HK15.3, HK17.4, HK21.2, HK21.3, HK21.4, HK24.1, HK24.2, HK25.2, HK25.4, HK25.5, HK26.7, HK29.4, HK29.7, HK38.1,  we are here HK40.7, HK44.1, HK44.2, HK44.3, HK44.6, HK45.9, HK45.20, HK45.49, HK45.63, HK45.73, HK48.7, HK54.5, HK59.2, HK59.3, HK59.4, HK60.2, HK60.3, HK60.6, HK60.7, HK56.2, HK66.1

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Incident particle flux URQMD simulated charged particle flux for Au + Au (central) events at 10A GeV assuming an interaction rate of 10 MHz kHz/cm 2 Flux ranging from 0.1 to 100 kHz/cm 2 At different regions Time-of-Flight detectors with different rate capabilities are needed

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Requirements 80  120  1 ns RPC twisted pair cabe feed through gas box CBM-ToF Requirements  Full system time resolution  T ~ 80 ps  Efficiency > 95 %  Rate capability  30 kHz/cm 2  Polar angular range 2.5° – 25°  Active area of 120 m 2  Occupancy < 5 %  Low power electronics (~ channels)  Free streaming data acquisition Charged hadron identification is provided by Time-of-Flight (ToF) measurement Multi-gap Resistive Plate Chambers (MRPC) are the most suitable ToF detectors fulfilling our requirements

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Working principle of an RPC E 0 = 120 kV/cm E. Cerron Zeballos et al., Nucl.Instrum.Meth. A374 (1996) Time resolution: Efficiency:  : incident ch. particle flux,  : electrode bulk resistivity, d: electrode thickness How to increase the rate capability? First Multi-gap RPC 1996 E. Cerron Zeballos et al., Nucl.Instrum.Meth. A374 (1996)   3x10 12  cm    cm

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März TDR ToF wall layout 6 types of modules (M1 – M6) only A module contains several MRPC counters Region containing counters equipped with float glass Region containing counters equipped with low resistive glass Region containing counters equipped with ceramic material

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Ceramic RPCs 1200 mm 24 mm 400 mm 1 module 400 RPC BFT 0 C = 8 modules 1 RPC 3 cells 1 cell 2 gaps Important scopes of High Energy Heavy Ion experiments are the start-time and the reaction-plane determination. For CBM the use of RPC for the Beam Fragmentation T 0 Counter (BFT 0 C) with low resistive radiation hard ceramics electrodes and small chess-board like single cells is under consideration.

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Ω cm: most suitable resistivity order for our aims electrodes RPC Ceramic RPCs

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Resistive Glass Development Resistive glass for high-rate MRPCs is developed in Beijing, China Aging tests

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März TDR ToF wall layout Alternative solution with Pad-MRPCs is available

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März SIS18 Counter time resolution about 53 ps Efficiency about 99 % Cluster size > 3 (due to a strip pitch of 4.2 mm) Particle flux only a few hundred Hz/cm 2

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März SPS 2 new types of counters designed a. Single stack with pitch of 10.1 mm b. Double stack with pitch of 7.2 mm Time over Threschold distribution Cluster matching System time resolution RMS = 92 ps  = 84 ps a. b.

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März TDR ToF wall layout Module M5

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März MRPC concepts Differential singel stack MRPC with 8 gaps Differential double stack MRPC with 2 x 5 gaps Advantages - lower High Voltage (<  6 kV) - smaller cluster size Disadvantages - more complex construction - more glass plates (#12) - impedance matching hardly possible (100  ) Advantages - simpler construction - symmetric signal path - fewer glass plates (#9) - lower weight - impedance matching easy possible (100  ) Disadvantages - higher High Voltage (>  10 kV) - bigger cluster size vs.

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Full size demonstrator and reference MRPC used for the performance analysis MRPC-P2 (HD) THU-strip (Beijing)MRPC-P5 (HD) MRPC differential differentialdifferential glass stacksingle doublesingle active area 32 x 27 cm 2 24 x 27 cm 2 15 x 4 cm 2 strips strip / gap 7/ 3 7/ / 1.8 mm glass typelow resistive glass low resistive glass low resistive glass glass thickness0.7 mm 0.7 mm 1.0 mm number of gaps8 2 x 46 gap width 220  m 220  m 220  m GSI MRPC-P2 THU-strip MRPC-P5

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März GSI

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Efficiency > 98 % Resolution  62 ps Efficiency > 96 % Resolution  65 ps Differential singel stack MRPC with 8 gaps Differential double stack MRPC with 2 x 4 gaps vs. Data points at  11 kV in the left plot can be compared with  5.5 kV in the right plot. Single stack MRPC shows slightly better efficiency and time resolution. Single counter resolution is in the order of 45 ps including all electronic components. GSI

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März SPS About 1100 channels 20 MRPC “STAR” module SPS North Area in Nov Beam: 30A GeV Target: Lead 1 mm Intensity: 10 7 / spill Spill length: 8 s Rates: few kHz/cm 2 Energy close to SIS300 conditions Upper setup Lower setup

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März SPS 19 Upper setup ) Lower setup Heidelberg-P5 2.USTC-SSS (  - ) ( ) 3.USTC-SSU (  0 ) ( ) 4.USTC-DSU (  ) ( ) 5.Tsinghua-SU (K + ) 6.Tsinghua-DS (K 0 ) 7.Tsinghua-DU (  + ) 8.Heidelberg-P Tsinghua-PAD (3 counter) 10.Bucharest2015-SS (  ) 11.Bucharest2015-DS (K 0* ) 12.Bucharest2012 (4 counter) ( ) 13.Bucharest-Reference 14.CRPC (2 counter) Beam Impedance matching

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März SPS 1 Track (blue) with hit multiplicity 8 2 Tracks (green) with hit multiplicity 7 1 Track (light blue) hit with multiplicity 6 1 Track (pink) with hit multiplicity 5 Event display after position calibration RPC Hits RPC layers Tracks The opportunity to construct tracks offers new possibilities to analyze and study the counters in much greater detail

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März TDR ToF wall layout Module M

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März SPS Float glass counters A and B and a reference counter C with low res. glass Spacial distribution ToT distribution Timediff. A and B Timediff. B and C Timediff. A and C Individual counter time resolution  A = 72.2 ps  B = 75.5 ps  C = 66.4 ps

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Time line Full-size demonstratorend 2012 TDR approved mid Full-size modules mid  Full-size modules with ‘final’ electronics mid  Construction of the modules  Integration in 2018  eTOF ready for beam  Integration in 2021  ToF ready for beam RPC typeres. materialefficiencytime resolutionrate capability Ceramic MRPCCeramic  90 %  90 ps  500 kHz/cm 2 Pad MRPCsem. glass  95 %  50 ps > 30 kHz/cm 2 Stripsem. glass> 95 %  50 ps > 30 kHz/cm 2 Stripfloat glass> 95 % 60 ps – 70 ps  1.5 kHz/cm 2 The CBM requirements are fulfilled. ToF – Project Timeline

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März STAR CBM “STAR” module STAR eTOF 3 layers 12 sectors 36 modules 6912 channels one sector collider Fix target Particle flux < 45 Hz/cm 2, Multi-hit probability < 7.4%

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Summary / Next steps Summary  The high rates in CBM require a special materials for MRPC electrodes  Ceramics and Low resistive glass from Beijing, China  MRPC solutions for all rate conditions available.  The design of the MRPC are driven by the free-streaming readout  impedance matching is realized.  The single stack MRPC shows slightly better efficiency and time resolution in comparison to a double stack MRPC.  Single counter resolutions are in the order of 50 ps to 70 ps including all electronic contributions.  All types of MRPC detectors fulfill the CBM ToF requirements.  Results of the last CERN beam time are still preliminary and analysis is ongoing.  A participation in BES II of BNL with about 10% of the full CBM Tof wall is being planned. Next steps  Selection of the final layout and counter configurations this year based on the last SPS beam time results.  Integration of the final electronics and readout until summer this year.  Load test for all available full size prototypes in Nov with final electronics with heavy ions at SPS CERN.  Integration and beam time test of one module at BNL in Feb. 2017

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Thank you for your attention Contributing institutions: Tsinghua Beijing, NIPNE Bucharest, GSI Darmstadt, IRIFrankfurt USTC Hefei, PI Heidelberg, ITEP Moscow, HZDR Rossendorf, CCNUWuhan, Special thanks go to: Norbert Herrmann

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Backup 80  1 ns Backup Slides

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Backup Slides CBM Physics topics  Deconfinement / phase transition at high ρ B  QCD critical endpoint  The equation-of-state at high ρ B  chiral symmetry restoration at high ρ B Observables  excitation function and flow of strangeness and charm  collective flow of hadrons  particle production at threshold energies  excitation function of event-by-event fluctuations  excitation function of low-mass lepton pairs  in-medium modifications of hadrons (ρ,ω,φ → e+e-(µ+µ-), D) non twisted part connector  p K D. Kresan Au + 25GeV Kaon acceptance depends critically on TOF resolution

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Engineering design of the CBM experiment TOF TRD RICH Magnet Nominal ToF position is between 6 m and 10 m from the target Movable design allows for optimization of the detection efficiency of weakly decaying particles (Kaons) Backup Slides

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Backup Slides

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März GSI Test beam time in October 2014 at GSI (Hades cave) Sm beam with 1.2A GeV kin. energy 5 mm thick lead target „Uniform“ illumination of the counter surface Flux on the lower part of the setup was about few hundred Hz/cm 2 Delivered flux does not meet the CBM requirements THU-Strip Setup

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Backup Slides

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Backup Slides

Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Results Differential single stack MRPC with 8 gas gaps Differential double stack MRPC with 2 x 4 gas gaps vs. In a triggered setup there is no major difference in the performance between both counter types. However, in a free running mode an impedance matched MRPC should give a better performance due to minimized signal reflections.