Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.

Slides:



Advertisements
Similar presentations
Vibrational Spectroscopy of Cold Molecular Ions Ncamiso Khanyile Ken Brown Lab School of Chemistry and Biochemistry June 2014.
Advertisements

Silver Nyambo Department of Chemistry, Marquette University, Wisconsin Resonance enhanced two-photon ionization (R2PI) spectroscopy of halo-aromatic clusters.
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
The Dynamics Of Molecules In Intense Ultrashort Laser Fields: Measurements of Ultrashort, Intense Laser-induced Fragmentation of The Simplest Molecular.
An STM Measures I(r) Tunneling is one of the simplest quantum mechanical process A Laser STM for Molecules Tunneling has transformed surface science. Scanning.
Generation of short pulses
Excitation processes during strong- field ionization and dissociatation of molecules Grad students: Li Fang, Brad Moser Funding : NSF-AMO November 29,
Narrow transitions induced by broad band pulses  |g> |f> Loss of spectral resolution.
Hyperfine Studies of Lithium using Saturated Absorption Spectroscopy Tory Carr Advisor: Dr. Alex Cronin.
1 National Cheng Kung University, Tainan, Taiwan First Experimental Observation of the Doubly-Excited 2 1  g State of Na 2 Chin-Chun Tsai, Hui-Wen Wu,
Jinjun Liu,1 Edcel J. Salumbides,2
HIGH RESOLUTION INFRARED SPECTROSCOPY OF N 2 O-C 4 H 2 AND CS 2 −C 2 D 2 DIMERS MAHDI YOUSEFI S. SHEYBANI-DELOUI JALAL NOROOZ OLIAEE BOB MCKELLAR NASSER.
Stefan Truppe MEASUREMENT OF THE LOWEST MILLIMETER- WAVE TRANSITION FREQUENCY OF THE CH RADICAL.
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
TOF Mass Spectrometer &
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Determination of fundamental constants using laser cooled molecular ions.
Helium Spectroscopy Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**,
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Interaction of laser pulses with atoms and molecules and spectroscopic applications.
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
QED of H 3 + Oleg L. Polyansky 1,2 1 Institute of Applied Physics, Russian Academy of Sciences, Uljanov Street 46, Nizhnii Novgorod, Russia Department.
Analysis of strongly perturbed 1 1  – 2 3  + – b 3  states of the KRb molecule J. T. Kim 1, Y. Lee 2, and B. Kim 3 1 Department of Photonic Engineering,
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
Strong coupling between a metallic nanoparticle and a single molecule Andi Trügler and Ulrich Hohenester Institut für Physik, Univ. Graz
W I S S E N T E C H N I K L E I D E N S C H A F T  Januar 13 Name und OE, Eingabe über > Kopf- und Fußzeile.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Precision tests of bound-state QED: Muonium HFS etc Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut.
High-Precision Sub-Doppler Infrared Spectroscopy of HeH + Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul A. Jenkins II, and.
High-Resolution Visible Spectroscopy of H 3 + Christopher P. Morong, Christopher F. Neese and Takeshi Oka Department of Chemistry, Department of Astronomy.
Spectroscopy and Atomic Structure Ch 04.
ENERGY LEVELS OF THE NITRATE RADICAL BELOW 2000 CM -1 Christopher S. Simmons, Takatoshi Ichino and John F. Stanton Molecular Spectroscopy Symposium, June.
Photodissociation in Astrochemistry Leiden, 5 Feb. 2015
ISMS-Conference Champaign-Urbana, 19 June 2014 Wim Ubachs VU University Amsterdam VLT PDA-XUV High-resolution molecular spectroscopy of H 2 at 10% the.
IR spectra of Methanol Clusters (CH3OH)n Studied by IR Depletion and VUV Ionization Technique with TOF Mass Spectrometer Department of Applied Chemistry.
FIRST HIGH RESOLUTION INFRARED SPECTROSCOPY OF GAS PHASE CYCLOPENTYL RADICAL: STRUCTURAL AND DYNAMICAL INSIGHTS FROM THE LONE CH STRETCH Melanie A. Roberts,
Collisional Orientation Transfer Facilitated Polarization Spectroscopy Jianmei Bai, E. H. Ahmed, B. Beser, Yafei Guan, and A. M. Lyyra Temple University.
ISMS 2015 Urbana-Champaign, 22 June 2015 Wim Ubachs VU University Amsterdam Physics beyond the Standard Model from Molecular Hydrogen.
Triplet-Singlet Mixing in Si­ 3 : the 1 A A 2 Transition Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 68.
Frequency Comb Velocity-Modulation Spectroscopy of HfF + Kevin Cossel Laura Sinclair, Tyler Coffey, Jun Ye, and Eric Cornell OSU 2011 Acknowledgements:
Main Title Manori Perera 1 and Ricardo Metz University of Massachusetts Amherst 64 th International Symposium on Molecular Spectroscopy June 25th, 2009.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
Progress Towards a High-Precision Infrared Spectroscopic Survey of the H 3 + Ion Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
Sub-Doppler Spectroscopy of H 3 + James N. Hodges, Adam J. Perry, Brian M. Siller, Benjamin J. McCall.
© Imperial College LondonPage 1 Probing nuclear dynamics in molecules on an attosecond timescale 7 th December 2005 J. Robinson, S. Gundry, C. A. Haworth,
Ionization in atomic and solid state physics. Paul Corkum Joint Attosecond Science Lab University of Ottawa and National Research Council of Canada Tunneling.
Testing Quantum Electrodynamics at critical background electromagnetic fields Antonino Di Piazza International Conference on Science and Technology for.
FAR-IR ACTION SPECTROSCOPY OF AMINOPHENOL AND ETHYLVANILLIN: EXPERIMENT AND THEORY Vasyl Yatsyna, Daniël Bakker*, Raimund Feifel, Vitali Zhaunerchyk, Anouk.
The gerade Rydberg states of molecular hydrogen Daniel Sprecher, 1 Christian Jungen, 2 and Frédéric Merkt 1 1 Laboratory of Physical Chemistry, ETH Zurich,
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
The bound-electron g factor in light ions
R.K. Altmann, L.S. Dreissen, S. Galtier and K.S.E. Eikema
Characterisation and Control of Cold Chiral Compounds
Muon Spectroscopy WS, Villigen Nuclear charge radii measurements by collinear laser spectroscopy and Penning trap g-factor experiments: The need for.
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
Curtin University, Perth, Australia
Single molecule spectroscopy: towards precision measurements on CaH+
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Physics beyond the Standard Model from molecular hydrogen; Part I
Presentation transcript:

Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu

Motivation:

Controlled preparation of high-v states of H 2 Test of QED in molecules Test the advanced ab initio calculations of Pachucki & coworkers Breakthrough in molecular theory (Relativistic effects and QED)

Motivation: Energy contribution of H 2 ground state + E rel + E QED E = E BO + E ad + E nad nonrelativistic cm -1 J. Komasa,K. Pachucki, et. al. J. Chem. Theory Comput. 7 (2011) 3105.

+ E rel + E QED E = E BO + E ad + E nad nonrelativistic cm -1 Motivation: variation by the vibrational quantum number v J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105.

Test of QED = Test of the Standard Model Electromagnetic (QED): D 0 ~ 4.5 eV Weak < eV Strong < eV Gravity ~ eV

Background J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10),

Background J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10),

H 2 +S( 1 S) H2SH2S 2-photon photolysis of H 2 S

J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10), H 2 +S( 1 S) H2SH2S H2H2 2-photon photolysis of H 2 S

Excitation scheme; multiple photons J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10),

Present work : H 2 (high-v) from H 2 S molecule J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10), H2SH2S H 2 (X, v=10-14), S( 1 D) H 2 (EF, v=2-5)

Present work : H 2 (high-v) from H 2 S molecule J. Steadman; T. Baer, The Journal of Chemical Physics 1989, 91 (10), H2SH2S H 2 (X, v=10-14), S( 1 D) H 2 (EF, v=2-5) Production laser Probe laser Ionization laser

Present work: Setup

Present work: Energy scheme

206nm

Preliminary results Overview scan

 High-resolution spectrum of H 2 ground state high vibrational quantum number Overview scan X(v=12)-F(v=3) Q1 transition Preliminary results

H + signal width/MH z Groun dExcitedA(J)Theorydiff (3)F2(3)Q(3) (5)F2(5)Q(5) (6)F1(6)Q(6) (0)F3(0)Q(0) (1)F3(1)Q(1) (2)F3(2)Q(2) (3)F3(3)Q(3) (1)F3(3)S(1) (4)E1(4)Q(4) (2)E2(4)S(2) (10)E0(10)Q(10) (4)E2(4)Q(4) (5)F2(7)S(5) Preliminary results: summary

H + signal width/MH z Groun dExcitedA(J)Theorydiff (3)F2(3)Q(3) (5)F2(5)Q(5) (6)F1(6)Q(6) (0)F3(0)Q(0) (1)F3(1)Q(1) (2)F3(2)Q(2) (3)F3(3)Q(3) (1)F3(3)S(1) (4)E1(4)Q(4) (2)E2(4)S(2) (10)E0(10)Q(10) (4)E2(4)Q(4) (5)F2(7)S(5) Preliminary results: summary

D. Bailly, et. al. Molecular Physics 2010, 108 (7-9), J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) Preliminary results: X(v=12) - F(v=3)

D. Bailly, et. al. Molecular Physics 2010, 108 (7-9), J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) Expected accuracy: cm -1 Theory: cm -1 Preliminary results: X(v=12) - F(v=3)

Conclusions and outlook Comfirm the previous work and reassign the transitions High resolution spectroscopy of high vibrational state of H 2 by photodissociation H 2 S molecule Test of QED theory of ground state vibrational level energies to v=12 Improve the S/N ratio Assign the unknown transitions Extend to the highest vibrational state (v=14)

Is H 2 O has the same phenomenon?

Wim Ubachs Edcel Salumbides

Preliminary results: Imaging molecular beam linearly polarized laser E field

Preliminary results: Imaging molecular beam linearly polarized laser E field

H 2 dissociation energy Experiment: Liu et al., J. Chem. Phys. 130, (2009) Calculation: Piszczatowski et al., J. Chem. Theory Comput. 5, 3039 (2009)

+ E rel + E QED E = E BO + E ad + E nad nonrelativistic cm -1 J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) Motivation: variation by the vibrational quantum number v

Motivation: QED theory Test of Quantum electrodynamics (QED) theory in Bond state. J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105.

QED: most accurate theory Free-particle QED electron anomalous magnetic moment : PRL 100, (2008) electron anomalous magnetic moment : PRL 100, (2008) exp-theory : 7.7 x (  from PRL 106, (2011) ) exp-theory : 7.7 x (  from PRL 106, (2011) ) Bound state QED Hydrogen atom; Hydrogen-like Uranium ion (U 91+ ) Helium atom: Kandula, PRL 10, (2010); van Rooij, Science 333, 196 (2011) HD + molecular ion: J. Koelemeij poster Hydrogen molecule: this talk QED calculations: Corrections scale to ( Z  ) → power series expansion in (  ) n or 1/( Z  ) n with proton number Z and fine structure constant 

Background

Results: high-J states in X 1  g +, v=0 of H 2 molecule J max (v=0) = 8 T equiv = 12,000 K E.J. Salumbides, et. al. Phys. Rev. Lett. 107, (2011) Uncertainty estimate (MHz) Line fitting 5 Residual Doppler <1 I 2 calibration 5 etalon nonlinearity 5 ac-Stark shift 50 dc-Stark shift 10 PDA chirp 150 Statistical 30 Total 160 or cm -1 or cm -1 or relative uncertainty 5 x 10 -8

Results: low-v in X 1  g + state of Hydrogen molecule Uncertainty estimate (MHz) Ac-Stark < 0. 4 Dc-Stark < 0. 1 Frequency chirp 2.0 Frequency calibration 0.1 Residual 1st-order Doppler H2 0.5 HD 0.3 HD 0.3 D2 0.3 D nd-order Doppler < 0. 1 Pressure shift < 0. 1 Statistics H2 1.5 HD 1.6 HD 1.6 D2 1.9 D2 1.9 Total Uncertainty H2 2.6 Total Uncertainty H2 2.6 HD 2.6 HD 2.6 D2 2.8 D2 2.8 M. Niu, et. al. J. Mol. Spectr. 300, (2014) G.D. Dickenson, et. al. Phys. Rev. Lett. 110, (2013)

Preliminary results D. Bailly, et. al. Molecular Physics 2010, 108 (7-9), J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011)  Determine energies of X highly vibrational quantum states

Some results: Two color scan

Some results: X12-F3 Q2

Some results: X11-F2 Q3

X12-F3 Q1

Some results: Image

Experiment: Chirp Acousto-optic modulator(AOM) Fiber link and coupler Voltage controlled oscillator High power amplifier

Experiment: Matlab program for chirp 47 M. S. Fee, et. al. Physical Review A 1992, 45 (7), K. S. E. Eikema, et. al. Physical Review A 1997, 55 (3),

Motivation: variation by the rotational quantum number J + E rel + E QED E = E BO + E ad + E nad nonrelativistic cm -1 J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105.

Fifth-force search Yukawa potential (Phenomenological) Hideki Yukawa Extra hadron-hadron interaction strength: range: Insert in molecular wave function

How do we measure?

Results: high-J states in X 1  g +, v=0 of H 2 molecule J max (v=0) = 8 T equiv = 12,000 K E.J. Salumbides, et. al. Phys. Rev. Lett. 107, (2011)

Results: high-J states in X 1  g +, v=0 of H 2 molecule J max (v=0) = 8 T equiv = 12,000 K E.J. Salumbides, et. al. Phys. Rev. Lett. 107, (2011) Uncertainty estimate (MHz) Line fitting 5 Residual Doppler <1 I 2 calibration 5 etalon nonlinearity 5 ac-Stark shift 50 dc-Stark shift 10 PDA chirp 150 Statistical 30 Total 160 or cm -1 or relative uncertainty 5 x 10 -8

 Determine energies of X, v=0 rotational quantum states E.J. Salumbides, et. al. Phys. Rev. Lett. 107, (2011) Results: high-J states in X 1  g +, v=0 of H 2 molecule

M. Niu, et. al. J. Mol. Spectr. 300, (2014) G.D. Dickenson, et. al. Phys. Rev. Lett. 110, (2013) Results: fundamental vibrational splitting in X 1  g + state of Hydrogen molecule

M. Niu, et. al. J. Mol. Spectr. 300, (2014) G.D. Dickenson, et. al. Phys. Rev. Lett. 110, (2013) Uncertainty estimate (MHz) AC-Stark < 0. 4 DC-Stark < 0. 1 Frequency chirp 2.0 Frequency calibration 0.1 Residual 1st-order Doppler H2 0.5 HD 0.3 D nd-order Doppler < 0. 1 Pressure shift < 0. 1 Statistics H2 1.5 HD 1.6 D2 1.9 Total Uncertainty H2 2.6 HD 2.6 D2 2.8 or relative uncertainty 1 x 10 -9

M. Niu, et. al. J. Mol. Spectr. 300, (2014) G.D. Dickenson, et. al. Phys. Rev. Lett. 110, (2013) Determine energy of on fundamental ground state vibration band (v = 0-1) Results: fundamental vibrational splitting in X 1  g + state of Hydrogen molecule

Fifth force constraints : EJS, Koelemeij, Komasa, Pachucki, Eikema, Ubachs, Phys Rev D 87, (2013). Phys Rev D 87, (2013).

Preliminary results D. Bailly, et. al. Molecular Physics 2010, 108 (7-9), J. Komasa, et. al. J. Chem. Theory Comput. 7 (2011) 3105.