G. Matsunaga 1), M. Okabayashi 2), N. Aiba 1), J. A. Boedo 3), J. R. Ferron 4), J. M. Hanson 5), G. Z. Hao 6), W. W. Heidbrink 7), C. T. Holcomb 8), Y.

Slides:



Advertisements
Similar presentations
YQ Liu, Peking University, Feb 16-20, 2009 Resonant Field Amplification Yueqiang Liu UKAEA Culham Science Centre Abingdon, Oxon OX14 3DB, UK.
Advertisements

ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
Berkery – Kinetic Stabilization NSTX Jack Berkery Kinetic Effects on RWM Stabilization in NSTX: Initial Results Supported by Columbia U Comp-X General.
West Lake International Symposium on Plasma Simulation; April, 2012 Influence of magnetic configuration on kinetic damping of the resistive wall.
A. Kirk, 21 st IAEA Fusion Energy Conference, Chengdu, China, October 2006 Evolution of the pedestal on MAST and the implications for ELM power loadings.
SUGGESTED DIII-D RESEARCH FOCUS ON PEDESTAL/BOUNDARY PHYSICS Bill Stacey Georgia Tech Presented at DIII-D Planning Meeting
Toroidally resolved measurements of ELMs in RMP and non-RMP H-mode discharges on DIII-D M.W. Jakubowski 1, T.E. Evans 3, C.J. Lasnier 4, O. Schmitz 2,
Cyclic MHD Instabilities Hartmut Zohm MPI für Plasmaphysik, EURATOM Association Seminar talk at the ‚Advanced Course‘ of EU PhD Network, Garching, September.
Nonlinear Simulations of ELMs with NIMROD D.P. Brennan Massachussetts Institute of Technology Cambridge, MA S.E. Kruger Tech-X Corp, Boulder, CO A. Pankin,
Discrete Alfven Eigenmodes Shuang-hui Hu College of Sci, Guizhou Univ, Guiyang Liu Chen Dept of Phys & Astr, UC Irvine Supported by DOE and NSF.
E.D. Fredrickson, a W.W. Heidbrink, b C.Z. Cheng, a N.N. Gorelenkov, a E. Belova, a A.W. Hyatt, c G.J. Kramer, a J. Manickam, a J. Menard, a R. Nazikian,
THEORY AND THEORY-BASED MODELS FOR THE PEDESTAL, EDGE STABILITY AND ELMs IN TOKAMAKS P. N. GUZDAR 1, S. M. MAHAJAN 2, Z. YOSHIDA 3 W. DORLAND 1, B. N.
Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U N. Oyama 1), Y. Sakamoto 1), M. Takechi 1), A. Isayama.
1 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference presented by Ph. Ghendrih S. Benkadda, P. Beyer M. Bécoulet, G. Falchetto,
11 th European Fusion Physics Conference, Aix-en-Provence, France, Samuli Saarelma, Edge stability in tokamak plasmas Edge stability in tokamak.
Modeling of ELM Dynamics for ITER A.Y. PANKIN 1, G. BATEMAN 1, D.P. BRENNAN 2, A.H. KRITZ 1, S. KRUGER 3, P.B. SNYDER 4, and the NIMROD team 1 Lehigh University,
Computer simulations of fast frequency sweeping mode in JT-60U and fishbone instability Y. Todo (NIFS) Y. Shiozaki (Graduate Univ. Advanced Studies) K.
Study of the pedestal dynamics and stability during the ELM cycle A. Burckhart Advisor: Dr. E. Wolfrum Academic advisor: Prof. Dr. H. Zohm MPI für Plasmaphysik,
Parallel and Poloidal Sheared Flows close to Instability Threshold in the TJ-II Stellarator M. A. Pedrosa, C. Hidalgo, B. Gonçalves*, E. Ascasibar, T.
Experimental Progress on Zonal Flow Physics in Toroidal Plasmas
SIMULATION OF A HIGH-  DISRUPTION IN DIII-D SHOT #87009 S. E. Kruger and D. D. Schnack Science Applications International Corp. San Diego, CA USA.
Nonlinear Frequency Chirping of Alfven Eigenmode in Toroidal Plasmas Huasen Zhang 1,2 1 Fusion Simulation Center, Peking University, Beijing , China.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
JT-60U Resistive Wall Mode (RWM) Study on JT-60U Go Matsunaga 松永 剛 Japan Atomic Energy Agency, Naka, Japan JSPS-CAS Core University Program 2008 in ASIPP.
Hybrid Simulations of Energetic Particle-driven Instabilities in Toroidal Plasmas Guo-Yong Fu In collaboration with J. Breslau, J. Chen, E. Fredrickson,
TH/7-2 Radial Localization of Alfven Eigenmodes and Zonal Field Generation Z. Lin University of California, Irvine Fusion Simulation Center, Peking University.
Japanese Efforts on the Integrated Modeling - Part II : JAEA Contribution - T. Takizuka (JAEA) acknowledgments : T. Ozeki, N. Hayashi, N. Aiba, K. Shimizu,
Edge Stability of Small-ELM Regimes in NSTX Aaron Sontag J. Canik, R. Maingi, R. Bell, S. Gerhardt, S. Kubota, B. LeBlanc, J. Manickam, T. Osborne, P.
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
1 Off-axis Fishbones in DIII-D Bill Heidbrink Leaders of the Experiment G. Matsunaga, M. Okabayashi Energetic Particle Working Group R. Fisher, R. Moyer,
ARIES-AT Physics Overview presented by S.C. Jardin with input from C. Kessel, T. K. Mau, R. Miller, and the ARIES team US/Japan Workshop on Fusion Power.
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
NSTX APS DPP 2008 – RWM Stabilization in NSTX (Berkery)November 19, Resistive Wall Mode stabilization in NSTX may be explained by kinetic theory.
Investigation of fast ion mode spatial structure in NSTX N.A. Crocker, S. Kubota, W.A. Peebles (UCLA); E.D. Fredrickson, N.N. Gorelenkov, G.J. Kramer,
(National Institute for Fusion Science, Japan)
Lecture Series in Energetic Particle Physics of Fusion Plasmas Guoyong Fu Princeton Plasma Physics Laboratory Princeton University Princeton, NJ 08543,
1 Lawrence Livermore National Laboratory Influence of Equilibrium Shear Flow on Peeling-Ballooning Instability and ELM Crash Pengwei Xi 1,2, Xueqiao Xu.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
1 A Proposal for a SWIM Slow-MHD 3D Coupled Calculation of the Sawtooth Cycle in the Presence of Energetic Particles Josh Breslau Guo-Yong Fu S. C. Jardin.
RFX-mod Programme Workshop, 20-22/01/09, Padova - T. Bolzonella1 Tommaso Bolzonella on behalf of RFX-mod team Consorzio RFX- Associazione Euratom-ENEA.
Mitigation of Kink Modes in Pedestal Z. T. Wang 1,2, Z. X. He 1, J. Q. Dong 1, X. L. Xu 2 , M. L. Mu 2, T. T. Sun 2, J. Huang 2, S. Y. Chen 2, C. J. Tang.
Improved performance in long-pulse ELMy H-mode plasmas with internal transport barrier in JT-60U N. Oyama, A. Isayama, T. Suzuki, Y. Koide, H. Takenaga,
NIMROD Simulations of a DIII-D Plasma Disruption
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Enhanced D  H-mode on Alcator C-Mod presented by J A Snipes with major contributions from M Greenwald, A E Hubbard, D Mossessian, and the Alcator C-Mod.
LI et al. 1 G.Q. Li 1, X.Z. Gong 1, A.M. Garofalo 2, L.L. Lao 2, O. Meneghini 2, P.B. Snyder 2, Q.L. Ren 1, S.Y. Ding 1, W.F. Guo 1, J.P. Qian 1, B.N.
Measurements of Magnetic Fluctuations in HSX S. Oh, A.F. Almagri, D.T. Anderson, C. Deng, C. Lechte, K.M. Likin, J.N. Talmadge, J. Schmitt HSX Plasma Laboratory,
DIII-D RMP simulations: enhanced density transport and rotation screening V.A. Izzo, I. Joseph NIMROD meeting:
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
Pedestal Characterization and Stability of Small-ELM Regimes in NSTX* A. Sontag 1, J. Canik 1, R. Maingi 1, J. Manickam 2, P. Snyder 3, R. Bell 2, S. Gerhardt.
Energetic Particles Interaction with the Non-resonant Internal Kink in Spherical Tokamaks Feng Wang*, G.Y. Fu**, J.A. Breslau**, E.D. Fredrickson**, J.Y.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
TH/7-1Multi-phase Simulation of Alfvén Eigenmodes and Fast Ion Distribution Flattening in DIII-D Experiment Y. Todo (NIFS, SOKENDAI) M. A. Van Zeeland.
6 th ITPA MHD Topical Group Meeting combined with W60 IEA Workshop on Burning Plasmas Summary Session II MHD Stability and Fast Particle Confinement chaired.
Energetic ion excited long-lasting “sword” modes in tokamak plasmas with low magnetic shear Speaker:RuiBin Zhang Advisor:Xiaogang Wang School of Physics,
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
L.R. Baylor 1, N. Commaux 1, T.C. Jernigan 1, S.J. Meitner 1, N. H. Brooks 2, S. K. Combs 1, T.E. Evans 2, M. E. Fenstermacher 3, R. C. Isler 1, C. J.
U NIVERSITY OF S CIENCE AND T ECHNOLOGY OF C HINA Influence of ion orbit width on threshold of neoclassical tearing modes Huishan Cai 1, Ding Li 2, Jintao.
24th IAEA Fusion Energy Conference, San Diego, USA, October 8-13, 2012
Magnetic fluctuation measurements in HSX and its impact on transport
8th IAEA Technical Meeting on
Reduction of ELM energy loss by pellet injection for ELM pacing
Influence of energetic ions on neoclassical tearing modes
T. Morisaki1,3 and the LHD Experiment Group
Non-Local Effects on Pedestal Kinetic Ballooning Mode Stability
Stabilization of m/n=1/1 fishbone by ECRH
T. Morisaki1,3 and the LHD Experiment Group
No ELM, Small ELM and Large ELM Strawman Scenarios
Presentation transcript:

G. Matsunaga 1), M. Okabayashi 2), N. Aiba 1), J. A. Boedo 3), J. R. Ferron 4), J. M. Hanson 5), G. Z. Hao 6), W. W. Heidbrink 7), C. T. Holcomb 8), Y. In 9), G. L. Jackson 4), Y. Q. Liu 10), T. C. Luce 4), G. R. McKee 11), T. H. Osborne 4),D. C. Pace 4), K. Shinohara 1), P. B. Snyder 4), W. M. Solomon 2), E. J. Strait 4), A. D. Turnbull 4), M. A. Van Zeeland 4), J. G. Watkins 12), L. Zeng 13), the DIII-D Team and the JT-60 Team 1) JAEA, 2) PPPL, 3) UCSD, 4) GA, 5) Columbia Univ., 6) SWIP, 7) UCI, 8) LLNL, 9) FAR-TECH, 10) CCFE, 11) Univ. Wisconsin, 12) SNL and 13) UCLA 24 th IAEA Fusion Energy Conference 8-13 October 2012 San Diego, USA

↓ Important for edge stability in high-β burning plasmas JT-60U/DIII-D have discovered ELM triggering by EP driven mode (EPdM) in wall stabilized high-β plasmas High-β N operation is advantageous to gain higher fusion output density, High-β N region above no-wall limit  ”wall-stabilized high-β region” However, wall-stabilized high-β N region is not fully understood. 24th IAEA FEC 20122/2010/11/2012 DIII-D JT-60U Energetic Particles (EPs) & EP driven modes Energetic Particles (EPs) & EP driven modes MHD modes

Outline 1.EP driven mode to trigger ELM and its EP transport 2. Waveform distortion of EPdM 3. Conditions of ELM triggering/pacing by EPdM 4. Possible mechanisms of ELM triggering by EPdM 5. Summary 24th IAEA FEC /2010/11/2012

Outline 1.EP driven mode to trigger ELM and its EP transport 2. Waveform distortion of EPdM 3. Conditions of ELM triggering/pacing by EPdM 4. Possible mechanisms of ELM triggering by EPdM 5. Summary 24th IAEA FEC /2010/11/2012

What is EP driven Mode (EPdM) to trigger ELM? DIII-D JT-60U NOTE: These modes have been named “Off-axis Fishbone Mode (OFM)” on DIII-D and “Energetic particle driven Wall Mode (EWM)” on JT-60U. Appear at high-β N > no-wall β N -limit, Initial mode frequency ~ Precession frequency of trapped EPs, Toroidally: mainly n=1, Poloidally: m=3~4 (localized at low field side) Radially: q=2), Strong distorted waveform, 24th IAEA FEC /2010/11/2012

EP diagnostics indicate intense EP transport/loss 24th IAEA FEC /2010/11/2012 DIII-D Trapped EPs (V || /V = 0.2~0.3,E=65-70keV) are transported by EPdM Beacon transport/loss like a sprinkler…

Strong correlation between waveform distortion and EP transport EP density near plasma edge increases monotonically with distortion increase DIII-D 24th IAEA FEC /2010/11/2012

Outline 1.EP driven mode to trigger ELM and its EP transport 2. Waveform distortion of EPdM 3. Conditions of ELM triggering/pacing by EPdM 4. Possible mechanisms of ELM triggering by EPdM 5. Summary 24th IAEA FEC /2010/11/2012

Waveform distortion has helical structure existing only at low field side(LFS). Waveform distortion is toroidally localized  Snake behavior EP transport/loss ride on this helical structure 24th IAEA FEC /2010/11/2012 DIII-D

Waveform distortion is composed of higher harmonics Experimentally obtained δB θ (θ, φ) can be reproduced by n=1 & n=2 modes. Unstable n=1, 2, and 3 modes w/o wall, (ideal MHD analysis) Distortion component always rides on maximum amplitude of fundamental component.  non-linear process? DIII-D Experiment MARS-F analysis 24th IAEA FEC /2010/11/2012

Outline 1.EP driven mode to trigger ELM and its EP transport 2. Waveform distortion of EPdM 3. Conditions of ELM triggering/pacing by EPdM 4. Possible mechanisms of ELM triggering by EPdM 5. Summary 24th IAEA FEC /2010/11/2012

ELM triggering by EPdMs occurs with some level of waveform distortion Some level of waveform distortion seems to be needed, Not always trigger ELM even with significant distortion level  need other conditions satisfied? DIII-D JT-60U 24th IAEA FEC /2010/11/2012

ELM triggering depends on time delay since the previous ELM ELM triggering by EPdMs infrequently occurs after ELM crash,  Pedestal recovery (marginal edge stability) is needed DIII-D 24th IAEA FEC /2010/11/2012

Difference of ELM triggering by EPdMs on DIII-D and JT-60U Partially synchronized 10/11/201224th IAEA FEC /20 DIII-D JT-60U Fully synchronized

ELM pacing occurs when the EPdM repetition frequency is larger than natural ELM frequency Frequent EPdM cycle can pace ELM, Pacing frequency is determined by balance between pedestal recovery and EP transport. 24th IAEA FEC /2010/11/2012 DIII-D f EPdM < f ELM JT-60U f ELM ≤ f EPdM

Outline 1.EP driven mode to trigger ELM and its EP transport 2. Waveform distortion of EPdM 3. Conditions of ELM triggering/pacing by EPdM 4. Possible mechanisms of ELM triggering by EPdM 5. Summary 24th IAEA FEC /2010/11/2012

Peeling-ballooning Transported EPs to edge affect edge stability Transported EPs may act as an additional pressure gradient or change edge stability boundary 10/11/201224th IAEA FEC /20 DIII-D JT-60U & Possibility 1 Possibility 2 (1) Additional  p can violate peeling-ballooning stability,  p ped =  (p th + δp EP ) (2) EP contribution (δW k ) can narrow stable region.

Analytic study says that EPs can destabilize marginal mode Marginal mode can be destabilized by EP contributions. 10/11/201224th IAEA FEC /20 From EPs From bulk plasma w/o wall From bulk plasma with an ideal wall Dispersion relation (with resistive wall) + kinetic contribution: From EPs

Interpretation of ELM triggering by EPdM Trapped EP can drive EPdM, EPdM waveform distortion enhances EP transport to edge, Transported EPs affect edge stability, ELM triggering occurs. 10/11/201224th IAEA FEC /20

Summary ELM triggering by the EPdMs has been discovered on JT-60U and DIII-D, Waveform distortion composed of higher harmonics strongly correlates with EP transport to edge, ELM triggering/pacing by the EPdMs need, (i)some level of waveform distortion and (ii) pedestal recovery, Transported EPs to edge affect edge stability as additional pressure or contribute to change stability. New gate has been opened! New approach to ELM pacing on ITER and DEMO. 24th IAEA FEC /2010/11/2012