KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 1 KATRIN: An experiment to.

Slides:



Advertisements
Similar presentations
Plasma Window Options and Opportunities for Inertial Fusion Applications Leslie Bromberg Ady Herskovitch* MIT Plasma Science and Fusion Center ARIES meeting.
Advertisements

outline introduction experimental setup & status
HQL2004 June 1. Jochen Bonn Institut für Physik, Johannes Gutenberg-Universität, Mainz, Evidence for neutrino masses Neutrino mass measurements Tritium.
1 CRACOW EPIPHANY CONFERENCE ON NEUTRINOS AND DARK MATTER January 2006, Cracow, Poland ● Introduction ● Neutrino mass determination ● The Karlsruhe.
JYFLTRAP: Spectroscopy with multi-trap facility Facility Mass purified beams In-trap spectroscopy Future plans.
SUMMARY – SESSION NU-3 ABSOLUTE NEUTRINO MASS SNOWMASS 2013, MINNEAPOLIS AUG 2, 2013 Hamish Robertson, University of Washington Convenors: Ben Monreal,
AMBER - A novel, non-invasive approach to direct neutrino mass measurement J.A.Thornby, M.J.Hadley, A.Lovejoy, Y.A.Ramachers Department of Physics, University.
MICE the Muon Ionization Cooling Experiment Emilio Radicioni, INFN EPS-HEP Aachen 2003.
PSSC Space Instrument Laboratory Plasma instrument calibration system provides an ion beam of energy range up to 130keV/charge in a clean room To develop.
55. Jahrestagung der ÖPG, September 2005 Pionischer Wasserstoff: Präzisionsmessungen zur starken Wechselwirkung J. Marton Stefan Meyer Institut der ÖAW.
Preinjector Group Collider-Accelerator Department
Description of BTeV detector Jianchun Wang Syracuse University Representing The BTeV Collaboration DPF 2000 Aug , 2000 Columbus, Ohio.
experimental platform
PAIR SPECTROMETER DEVELOPMENT IN HALL D PAWEL AMBROZEWICZ NC A&T OUTLINE : PS Goals PS Goals PrimEx Experience PrimEx Experience Design Details Design.
Hamish Robertson, CENPA, University of Washington Direct probes of neutrino mass Neutrino Oscillation Workshop NOW2014, Otranto Italy Sept. 8.
Direct Determination of Neutrino Mass
Iván Fernández CIEMAT 2 nd EU-US DCLL Workshop, University of California, Los Angeles, Nov th, 2014.
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
Status of the Beamline Simulation A.Somov Jefferson Lab Collaboration Meeting, May 11, 2010.
KATRIN - Karlsruhe Tritium Neutrino Experiment - measuring sub-eV neutrino masses G. Drexlin, FZ Karlsruhe for the KATRIN Collaboration International Europhysics.
KATRIN - The Karlsruhe Tritium Neutrino Experiment The Karlsruhe Tritium Neutrino Experiment H.H. Telle Department of Physics, University of Wales Swansea.
FETS H - Ion Source Experiments and Installation Scott Lawrie, Dan Faircloth, Alan Letchford, Christoph Gabor, Phil Wise, Mark Whitehead, Trevor Wood,
NuFact 2011 Imperial College/RAL Dave Wark Experimental Status of Neutrino Physics Dave Wark Imperial/RAL NuFact 2011 Geneva August 1 st, 2011.
Copyright © 2009 Pearson Education, Inc. Applications: Motors, Loudspeakers, Galvanometers.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
LBNL 88'' cyclotron operations Status of the 88-Inch Cyclotron High-Voltage upgrade project December 14, 2009 Ken Yoshiki Franzen.
Can we look back to the Origin of our Universe? Cosmic Photon, Neutrino and Gravitational Wave Backgrounds. Amand Faessler, Erice September 2014 With thanks.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Jürgen Florenkowski GSI, Darmstadt Agenda Annual Report Meeting EU construction ( CNI ) contract "DIRAC-PHASE-1" for the FAIR project September 26, 2006.
NEUTRINO MASS STUART FREEDMAN MEMORIAL SYMPOSIUM BERKELEY, JAN 11, 2014 Hamish Robertson, University of Washington a long wait for a little weight.
Absolute neutrino mass scale and the KATRIN experiment Otokar Dragoun for the KATRIN Collaboration Nuclear Physics Institute of the ASCR, Řež
EBIS ARR Jim Alessi May 4- 7, 2010 Technical Overview.
A new RFQ cooler: concept, simulations and status Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics E. Traykov TRI  P project.
A mass-purification method for REX beams
The KATRIN experiment M. Beck Institut Für Kernphysik Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-str Münster Motivation The Experiment.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
1 Target Station Design for Neutrino Superbeams Dan Wilcox High Power Targets Group, Rutherford Appleton Laboratory NBI 2012, CERN.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
UK Neutrino Factory Meeting Front End Test Stand (F.E.T.S.) Engineering Status by P. Savage 22nd April 2009.
RF source, volume and caesiated extraction simulations (e-dump)
Developments of the FETS Ion Source Scott Lawrie.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
Institute for Nuclear Physics Ralf Gebel – PSTP 2007 – September 2007 Facility overview Ion sources at COSY R&D details.
Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 Direct Measurements of the Neutrino Mass Klaus Eitel Forschungszentrum.
TRI  P RFQ design, simulations and tests E. Traykov TRI  P project and facility RFQ tests and design Simulations Conclusion TRI  P Group: G.P. Berg,
LHC Symposium 2003 Fermilab 01/05/2003 Ph. Schwemling, LPNHE-Paris for the ATLAS collaboration Electromagnetic Calorimetry and Electron/Photon performance.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
INSTITUUT VOOR KERN- EN STRALINGSFYSICA 18-September-2002Weak Interaction Trap for CHarged particles1 Present status of WITCH experiment Valentin Kozlov.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
Progress of Bunched Beam Electron Cooling Demo L.J.Mao (IMP), H.Zhang (Jlab) On behalf of colleagues from Jlab, BINP and IMP.
Assembly 12/14/06 #1 Assembly and Commissioning Paul Huffman.
PS-ESS and LEBT State of the art Lorenzo Neri Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud.
Status of the NO A Experiment Kirk Bays (Caltech) on behalf of the NO A collaboration Lake Louise Winter Institute Saturday, Feb 22, 2014.
N νeνeνeνe p+p+ e-e- The Proton Spectrum in Neutron Beta Decay: Latest Results with the a SPECT Spectrometer The a SPECT collaboration Universität MainzF.
Understanding Extraction And Beam Transport In The ISIS H - Ion Source D. C. Faircloth, A.P Letchford, C. Gabor, S. Lawrie M. O. Whitehead and T. Wood.
Beam Commissioning Adam Bartnik.
Electrostatic deflector development at RWTH Aachen
The KATRIN Neutrino Mass Experiment
The New CHOD detector for the NA62 experiment at CERN S
Traps for antiprotons, electrons and positrons in the 5 T and 1 T magnetic fields G. Testera & Genoa group AEGIS main magnetic field (on axis) : from Alexei.
Acknowledgements Slides and animations were made by Dr. Jon Karty Mass Spectrometry Facility Indiana University, Bloomington.
Development of beam tracking detector using MicroChannel Plate(MCP)
Summary of activities of the pellet target development
DC Injector and Space Charge Simulation Status
PANDA Collaboration Meeting
H- Ion Source Development
KATRIN: A next generation neutrino mass experiment
Advanced Research Electron Accelerator Laboratory
Development of hybrid photomultiplier for Hyper-Kamiokande
Design, development and test experiments for the Rearsection of KATRIN
Presentation transcript:

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 1 KATRIN: An experiment to determine the neutrino mass Florian Fränkle for the KATRIN Collaboration

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 2 Motivation from cosmology determine absolute neutrino mass scale probe cosmological relevant region help to understand neutrino mass generation mechanism Upper limit on neutrino mass: m < 2.3eV (  -decay) KATRIN: only model independent determination of “electron anti-neutrino mass”, sensitivity: 0.2 eV

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 3 Tritium  -decay tritium as  emitter: high specific activity (half-life: 12.3 years) low endpoint energy E 0 (18.57 keV) super-allowed observable: Fermi theory of  -decay:

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 4 KATRIN experiment 70 m tritium decay electron transport energy analysis tritium retention (KArlsruhe TRItium Neutrino experiment, location: Forschungszentrum Karlsruhe)  -decay rate: Hz T 2 pressure: mbar background rate: Hz T 2 pressure: mbar adiabatic guiding of electrons on meV level about 14 orders of magnitude

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 5 WGTS purpose: Delivery of  -decay electrons per second requirements: Stability of T 2 density profile of (function of: injection rate, purity, beamtube temperature T B, pump rate) T B homogeneity ±30 mK T B stability ±30 mK h -1 properties: Beam tube: 10m length, 90mm diameter, absolute temperature 30K Tritium loop: 40g T 2 / day status: Demonstrator to test new cooling concept 2009 Construction 2010/11 Commissioning 2012 Longitudinal source profile T 2 Pumping T 2 Injection 3.6 Tesla TLK provides complex infrastructure to handle tritium

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 6 tritium retention purpose: reduce T 2 flux by 10 5 purpose: reduce T 2 flux by 10 7 T2T2 6.2m T2T2 T2T2 status: Delivered to FZK 2 days ago! Acceptance tests test program 2010 status: Technical design report is ready presently being manufactured at ASG Delivery to FZK on Commissioning 2011 differential pumping of T 2 (TMPs) magnetic guiding of electrons (5.6T) removal of positive ions (dipole) cryosorption of T 2 on Argon frost concept successfully tested (TRAP) T2T2 cryosorption Ar frost stainless steel Differential Pumping Section:Cryogenic Pumping Section:

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 7 Arrival of DPS

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 8 tritium retention purpose: reduce T 2 flux by 10 5 purpose: reduce T 2 flux by 10 7 T2T2 6.2m T2T2 T2T2 status: Delivered to FZK 2 days ago! Acceptance tests test program 2010 status: Technical design report is ready presently being manufactured at ASG Delivery to FZK on Commissioning 2011 differential pumping of T 2 (TMPs) magnetic guiding of electrons (5.6T) removal of positive ions (dipole) cryosorption of T 2 on Argon frost concept successfully tested (TRAP) T2T2 cryosorption Ar frost stainless steel Differential Pumping Section:Cryogenic Pumping Section:

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 9 main spectrometer purpose: energy analysis status: First vacuum test without getter pump successful ( mbar)! Mounting of inner electrode system Electro-magnetic test measurements 2010 energy resolution 18.6keV pressure < mbar background event rate < 10mHz stable HV system -18.6kV) properties: requirements: MAC-E filter (integrating high pass filter) volume: 1240m³, surface: 689,6m² inner electrode system variable voltage to scan E 0 region background rejection: U 0 =-18.4kV U V e-e- U V  B spectrometer wall

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 10 main spectrometer

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 11 detector system purpose: counting transmitted  -decay electrons status: Assembly and initial commissioning until 02/2010 Delivery to FZK 03/2010 intrinsic background rate < 1mHz in RoI electron energy range 5 to 100keV energy resolution < 1keV properties: requirements: segmented monolithic Silicon PIN Diode 148 pixels, area ~ 50mm² each post acceleration (up to 30kV) 100 mm pinch magnet 6T calibration system detector magnet T

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 12 pre-spectrometer purpose: reduce  -decay electron flux by 10 6 status: end of test measurements 12/2009 relocation of pre-spectrometer to main spectrometer hall 2010 MAC-E filter energy resolution -18.4keV pressure mbar pre-spectrometer test setup 1detector 2magnets (4.5 T) 3vessel 4electrode system 5electron gun6valve vacuum concept successfully tested (p = mbar, routinely) active HV stabilization tested test of new electromagnetic design background suppression optimization of electrode system prototype for main spectrometer:

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 13 pre-spectrometer vessel magnet wire electrode full metal electrodes ground electrode Penning trap GND magnetic field U < 0V Combination of electric and magnetic fields can create Penning traps  Penning discharge can be major background source! GND U < 0V magnetic field rate over time rate > 5kHz Detailed investigations of Penning traps Check of parameter space: pressure, potential, magnetic field Penning Trap:

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 14 new electrodes G 0kV A -18kV B -18kV 360mm A 310mm G new electrodes to remove Penning trap design also applied to main spectrometer Anti Penning electrode Ground electrode

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 15 new electrodes new electrodes to remove Penning trap design also applied to main spectrometer G 0kV A -18kV B -18.3kV 360mm A 310mm G Anti Penning electrode Ground electrode

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 16 Penning discharge  U=0  U=-100V  U=-200V  U=-300V a 180V deep penning trap ignites after some minutes. ignition stops if B < A (as expected from calculation)  Penning discharge is under control!  U=A-B

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 17 summary & outlook KATRIN will measure electron anti-neutrino mass with a sensitivity of 0.2 eV Tritium source: construction 2011/12 Tritium retention: DPS: arrived 2 days ago, acceptance tests & test program CPS: TDR ready, presently being manufactured, delivery to FZK 10/2010 Pre-spectrometer: test setup important for main spectrometer design Main Spectrometer: electrode installation & start of EM test program 2010 Detector: assembly & initial commissioning, delivery to FZK 03/2010 Assembly of components & system integration 2011/12 Start of T 2 measurements: summer 2012

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 18 KATRIN collaboration March 2009

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 19

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 20 discovery potential

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 21 energy spectra

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 22 MAC-E filter M agnetic A diabatic C ollimation combined with an E lectrostatic Filter Energy resolution: Magnetic moment: MAC-E filter: E0E0+EE0E0+E 1 0 energy transmission p long. p trans. p  energy ideal filter: 1 0 E0E0 transmission transmission if E > E 0 + E t *B A /B max *sin²(  )