Similar Right triangles Section 8.1. Geometric Mean The geometric mean of two numbers a and b is the positive number such that a / x = x / b, or:

Slides:



Advertisements
Similar presentations
8-1 Similarity in Right Triangles
Advertisements

Geometric Mean Theorem I
9.1 Similar Right Triangles. Theorem If an altitude is drawn to the hypotenuse of a Right triangle, then it makes similar triangles to the original Right.
Altitudes Recall that an altitude is a segment drawn from a vertex that is perpendicular to the opposite of a triangle. Every triangle has three altitudes.
Assignment P. 361: 32, 34, 36 P : 1-3, 5-23, 30, 31, 33, 38, 39 Challenge Problems.
Geometric Mean & the Pythagorean Thm. Section 7-1 & 7-2.
MA.912.T.2.1 CHAPTER 9: RIGHT TRIANGLES AND TRIGONOMETRY.
Use Similar Right Triangles Ch 7.3. Similar Right Triangle Theorem If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles.
7.4 Similarity in Right Triangles
9.1 Similar Right Triangles
Section 7.4 Similarity in Right Triangles. Geometric Mean The positive number of x such that ═
7.4 Similarity in Right Triangles In this lesson we will learn the relationship between different parts of a right triangle that has an altitude drawn.
Section 8-1 Similarity in Right Triangles. Geometric Mean If a, b, and x are positive numbers and Then x is the geometric mean. x and x are the means.
Do investigation on page 439.
7-4 Similarity in Right Triangles
7.4 Similarity in Right Triangles
Mean Proportional.
Section 9.1 Similar Right Triangles OBJECTIVE: To find and use relationships in similar right triangles BIG IDEAS: REASONING AND PROOF VISUALIZATIONPROPORTIONALITY.
Chapter 7.4.  The altitude is the Geometric Mean of the Segments of the Hypotenuse.
8.4: Similarity in Right Triangles Objectives: Students will be able to… Find the geometric mean between 2 numbers Find and use relationships between similar.
9.1 (old geometry book) Similar Triangles
Geometric Mean and Right Triangles
Right Triangles and Trigonometry Chapter Geometric Mean  Geometric mean: Ex: Find the geometric mean between 5 and 45 Ex: Find the geometric mean.
A = B SECTION 7-1 Jim Smith JCHS. The Geometric Mean Between 2 Numbers ( A and B ), Is The Number That When Substituted For X Will Make This Proportion.
Warm Up Week 7. Section 9.1 Day 1 I will solve problems involving similar right triangles. Right Triangle – Altitude to Hypotenuse If the altitude.
Similar Right Triangles
Geometry 9.1 Similar Right Triangles. June 5, 2016Geometry 9.1 Similar Right Triangles2 Similar Triangles A B C D Remember : If two angles of one triangle.
Similar Right Triangle Theorems Theorem 8.17 – If the altitude is drawn to the hypotenuse if a right triangle, then the two triangles formed are similar.
Chapter 8 Lesson 4 Objective: To find and use relationships in similar right triangles.
Geometric Mean and the Pythagorean Theorem
 By drawing the altitude from the right angle of a right triangle, three similar right triangles are formed C.
Use Similar Right Triangles
9.3 Altitude-On-Hypotenuse Theorems (a.k.a Geometry Mean)
7.3 Use Similar Right Triangles
NOTES GEOMETRIC MEAN / SIMILARITY IN RIGHT TRIANGLES I can use relationships in similar right triangles.
9.3 Similar Right Triangles. Do Now: Draw the altitude and describe what it is.
Section 8-1 Similarity in Right Triangles. Altitudes altitude Recall that an altitude is a segment drawn from a vertex such that it is perpendicular to.
Altitudes Recall that an altitude is a segment drawn from a vertex that is perpendicular to the opposite of a triangle. Every triangle has three altitudes.
7.4 Notes Similarity in Right Triangles. Warm-up:
Chapter 9: Right Triangles and Trigonometry Section 9.1: Similar Right Triangles.
Chapter 9: Right Triangles and Trigonometry Lesson 9.1: Similar Right Triangles.
Section 7-4 Similarity in Right Triangles. Hands-On Activity Take a piece of paper and cut out a right triangle. Use the edge of the paper for the right.
Geometry 6.4 Geometric Mean.
 Lesson 7-4.  Draw one of the diagonals for your rectangle to form two right triangles. Q: What is the relationship between the two right triangles?
Find the geometric mean between: 1.6 and and 20 Geometric Mean x is the geometric mean between a and b. a x x b = Warm-up!!
8-1 Geometric Mean The student will be able to: 1.Find the geometric mean between two numbers. 2.Solve problems involving relationships between parts of.
Pythagorean Theorem and Special Right Triangles
Geometric Mean 7.1.
Right Triangles and Trigonometry
Geometric Mean Pythagorean Theorem Special Right Triangles
8-1: Similarity in Right Triangles
5.4: The Pythagorean Theorem
Chapter 7.3 Notes: Use Similar Right Triangles
Similar Right Triangles: Geometric Mean
9.3 Warmup Find the value of x and y
7.3 Use Similar Right Triangles
Lesson 50 Geometric Mean.
Use Similar Right Triangles
Similar Right Triangles
DO NOW.
Chapter 8 Section 1 Recall the rules for simplifying radicals:
Geometric Mean Pythagorean Theorem Special Right Triangles
Similarity in Right Triangles
RIGHT TRIANGLE PROPORTIONS
8.1 Geometric Mean The geometric mean between two numbers is the positive square root of their product. Another way to look at it… The geometric mean is.
Using Similar Right Triangles
Midpoint and Median P9. The midpoint of the hypotenuse of a right triangle is equidistant from the 3 vertices. P12. The length of a leg of a right triangle.
Similar Right Triangles
Right Triangles with an altitude drawn.
Presentation transcript:

Similar Right triangles Section 8.1

Geometric Mean The geometric mean of two numbers a and b is the positive number such that a / x = x / b, or:

Altitude of Right Triangle If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other.

Altitude of Right Triangle

Geometric mean In a right triangle, the altitude from the right angle to the hypotenuse divides the hypotenuse into 2 segments The length of the altitude is the geometric mean of the lengths of the two segments.

Geometric mean cont.

The length of each leg of the right triangle is the geometric mean of the length of the hypotenuse and the segment of the hypotenuse that is adjacent to the leg

Geometric mean cont.

Other Forms of Geometric Mean Formulas

Find X