Study of Young TeV Pulsar Wind Nebulae with a Spectral Evolution Model Shuta J. Tanaka & Fumio Takahara Theoretical Astrophysics Group Osaka Univ., Japan.

Slides:



Advertisements
Similar presentations
(2) Profile of the Non-Thermal Filaments of SNRs =>High Energy Particle Acceleration =>High Energy Particle Acceleration In all the SNRs & GC Non Thermal.
Advertisements

Supernova Remnants Shell-type versus Crab-like Phases of shell-type SNR.
Stephen C.-Y. Ng HKU. Outline What are pulsar wind nebulae? Physical properties and evolution Why study PWNe? Common TeV sources, particle accelerators.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae S.P. Reynolds et al. Martin, Tseng Chao Hsiung 2013/12/18.
Recent developments in the theory of Pulsar Wind Nebulae (Plerions) Yves Gallant LPTA, Université Montpellier II (relativistic) magneto-hydrodynamics of.
Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
RX J alias Vela Jr. The Remnant of the Nearest Historical Supernova : Impacting on the Present Day Climate? Bernd Aschenbach Vaterstetten, Germany.
Pulsar Wind Nebulae with LOFAR Jason Hessels (ASTRON/UvA) Astrophysics with E-LOFAR - Hamburg - Sept. 16 th -19 th, 2008.
The Fermi Bubbles as a Scaled-up Version of Supernova Remnants and Predictions in the TeV Band YUTAKA FUJITA (OSAKA) RYO YAMAZAKI (AOYAMA) YUTAKA OHIRA.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
Emissions from Shells Associated with Dying Radio Sources @ Workshop on East-Asian Collaboration for the SKA /2 Hirotaka Ito YITP, Kyoto University.
Magnetic dissipation in Poynting dominated outflows Yuri Lyubarsky Ben-Gurion University.
A New Aspect of the Crab Pulsar Nebula; Particle Acceleration and Heating Shibata, S., Tomatsuri, H., Shimanuki, M., Saito, K. Nakamura, Y., (Yamagata.
The Evolution & Structure of Pulsar Wind Nebulae Gaensler, B. M., & Slane P.O. ARA&A, 2006, 44:17.
Challenges of Relativistic Jets - Cracow (June 2006) Patrick Slane Pulsar Winds and Jets Pat Slane (Harvard-Smithsonian Center for Astrophysics)
Cyclotron & Synchrotron Radiation
From Progenitor to Afterlife Roger Chevalier SN 1987AHST/SINS.
PARTICLE ACCELERATION AND RADIATION IN PULSAR WIND NEBULAE
Young X-ray pulsars and ULXs Roberto Soria (MSSL) Roberto Soria (MSSL) Thanks also to: Rosalba Perna (JILA-Boulder) Luigi Stella (INAF-Rome)
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
PULSAR WIND NEBULAE: PROBLEMS AND PROSPECTS Jonathan Arons University of California, Berkeley.
Pulsar Wind Nebulae and Relativistic Shocks Elena Amato INAF-Osservatorio Astrofisico di Arcetri Collaborators: Jonathan Arons, Niccolo’ Bucciantini, Luca.
Theoretical Overview on High-Energy Emission in Microquasars Valentí Bosch i Ramon Universitat de Barcelona Departament d'Astronomia i Meteorologia Barcelona,
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
New evidence for strong nonthermal effects in Tycho’s supernova remnant Leonid Ksenofontov 1 H.J.Völk 2, E.G.Berezhko 1, 1 Yu.G.Shafer Institute of Cosmophysical.
Nick Camus Niccolo Bucciantini Philip Hughes Maxim Lyutikov Serguei Komissarov (University of Leeds) RMHD simulations of the Crab Nebula.
World Cup of VHE Gamma Rays J-Dog, for the SNR/PWN Pack.
Magnetic reconnection at the termination shock in a striped pulsar wind Yuri Lyubarsky Ben-Gurion University, Israel In collaboration with: Jerome Petri.
A Model for Emission from Microquasar Jets: Consequences of a Single Acceleration Episode We present a new model of emission from jets in Microquasars,
MODELING STATISTICAL PROPERTIES OF THE X-RAY EMISSION FROM AGED PULSAR WIND NEBULAE Rino Bandiera – INAF – Oss. Astrof. di Arcetri The Fast and the Furious,
GLAST Workshop (Cambridge, MA, 6/21/07) Patrick Slane (CfA) Supernova Remnants and GLAST.
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
The TeV view of the Galactic Centre R. Terrier APC.
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
The “Crab Nebula”: the most famous supernova remnant. distance  2000 pc diameter  3 pc.
Fundamental Problems: Pulsars to their Winds O. de Jager, C. Venter, M. Vorster (NWU, S.A.) North-West University, Potchefstroom South Africa NS & GB –
Pulsar wind nebulae and their interaction with the environments Fangjun Lu 卢方军 Institute of High Energy Physics Chinese Academy of Sciences.
2009 Fermi Symposium, Washington, DC Patrick Slane (CfA) Supernova Remnants and Pulsar Wind Nebulae in the Fermi Era Collaborators: D. Castro S. Funk Y.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
3D Crab Model and comparison with Chandra result Pulsar Wind Nebulae and Particle Acceleration in the Pulsar Magnetosphere Shibata, S., Tomatsuri, H.,
HESS J An exceptionally luminous TeV γ-ray SNR Stefan Ohm (DESY, Zeuthen) Peter Eger (MPIK, Heidelberg) On behalf of the H.E.S.S. collaboration.
Harvard-Smithsonian Center for Astrophysics Patrick Slane Pulsar Wind Nebulae.
Low frequency observation of both pulsar wind and magnetodipole radiation from switch on-off pulsars Ya.N. Istomin P.N. Lebedev Physical Institute, Moscow,
Particle Acceleration by Relativistic Collisionless Shocks in Electron-Positron Plasmas Graduate school of science, Osaka University Kentaro Nagata.
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
COSPAR 2008, Montreal, 18 July Patrick Slane (CfA) Pulsar Wind Nebulae Observations of.
A new model for emission from Microquasar jets Based on works by Asaf Pe’er (STScI) In collaboration with Piergiorgio Casella (Southampton) March 2010.
Masaki Yamaguchi, F. Takahara Theoretical Astrophysics Group Osaka University, Japan Workshop on “Variable Galactic Gamma-ray Source” Heidelberg December.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
The non-thermal broadband spectral energy distribution of radio galaxies Gustavo E. Romero Instituto Argentino de Radio Astronomía (IAR-CCT La Plata CONICET)
Heidelberg 2008 Patrick Slane (CfA) Pulsar Wind Nebulae.
Gamma-Ray Emission from Pulsars
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
SNRs and PWN in the Chandra Era – S. OrlandoBoston, USA – July 2009 S. Orlando 1, O. Petruk 2, F. Bocchino 1, M. Miceli 3,1 1 INAF - Osservatorio Astronomico.
American Astronomical Society – Austin, TX (2008) Patrick Slane (CfA) In collaboration with: D. Helfand (Columbia) S. Reynolds (NC State) B. Gaensler (U.
PULSAR WINDS AND NEBULAE Elena Amato INAF-Osservatorio Astrofisico di Arcetri Collaborators: Jonathan Arons, Niccolo’ Bucciantini, Luca Del Zanna, Delia.
High energy Astrophysics Mat Page Mullard Space Science Lab, UCL 7. Supernova Remnants.
5 vii 2012Frascati1 The Crab Impact Roger Blandford Yajie Yuan KIPAC Stanford.
Recent Observations of Supernova Remnants with VERITAS Amanda Weinstein (Iowa State University) For the VERITAS Collaboration.
GLAST Observations of Supernova Remnants and Pulsar Wind Nebulae Bryan Gaensler The University of Sydney / Harvard-Smithsonian Center for Astrophysics.
Observation of Pulsars and Plerions with MAGIC
Fermi Collaboration Meeting
磁場散逸を考慮したパルサー星雲の閉じ込めについて
Magnetohydrodynamics of pulsar winds and plerions
High Energy emission from the Galactic Center
Modelling of non-thermal radiation from pulsar wind nebulae
Diffusive Shock Acceleration
Presentation transcript:

Study of Young TeV Pulsar Wind Nebulae with a Spectral Evolution Model Shuta J. Tanaka & Fumio Takahara Theoretical Astrophysics Group Osaka Univ., Japan 2010, 7, 23, COSPAR 2010 Scientific Event E19: New Insights into the Physics of Supernova Remnants and Pulsar Wind Nebulae 1

2 Introduction Non-thermal spectrum (synchrotron & IC) Magnetized cloud of non-thermal e+- plasma (& ions) Jet – torus structure Powered by rotation powered pulsar Expansion velocity V PWN << c. Some are found in SNR. Confined by SNR Flat radio spectrum & steep X-ray spectrum Broken power-law or two component injection chandra Atoyan & Aharonian 96

3 Problems Pulsar parameters: spin energy & spin-down time Pair multiplicity κ: pulsar electrodynamics Radio obs. of Crab Nebula (~10 6 n GJ ) σ problem: relativistic magnetized plasma flow σ >> 1 at light cylinder σ << 1 at termination shock (strong B field) (strong dissipation needed) Broken power-law distribution: particle acceleration Standard shock acceleration (e. g. DSA) cannot create such distribution. Study with a spectral evolution model of PWNe. σ: EM energy flux / particle energy flux

4 Model: Set Up e ±, B η parameter is close to σ parameter. Applicable for nearly spherical young PWNe with know pulsar spin-down luminosity. Expanding uniform sphere (one zone) Constant velocity expansion (< 10kyr) include effects from SNR (E SN, M ej, etc.) into V PWN. Injection from pulsar spin-down divided into non-thermal e+- & the B field broken power-law logγ γ min γbγb γ max ∝ γ -p1 ∝ γ -p2

5 Model: Evolutions Evolution of B field Evolution of particle distribution (radiative & adiabatic cooling) Spectral evolution of the Crab Nebula radio[%/yr]Opt.[%/yr] Ours Obs η=0.005 << 1, B(t age ) ~ 85μG Current flux decreasing rate Tanaka & Takahara ’10 ApJ

Young TeV PWNe 6 G G Kes 75 G B ~ 64μB B ~ 21μB B ~ 15μB B ~ 6.7μB IC/ISRF dominate for all objects.

7 Increase γ-rays = injection wins! Pulsar Parameters Decrease γ-rays = cooling wins! CrabG G Kes 75G Age[kyr] τ c = P/2P[kyr] τ 0 [kyr] L 0 * τ 0 [10 48 ergs] Diversity of pulsar parameters.

Magnetization Parameter 8 All Young TeV PWNe need < η < << 1 (σ << 1). Non TeV PWNe (like 3C58 & B ) can be formed by η ~ 1 pulsar winds? CrabG G Kes 75G η[10 -3 ] B now [μB] η << 1 arises from flux ratio of IC to syn.

9 Pair Multiplicity Typical ‘p1’ and ‘p2’ give, 1<p1<2<p2 γ min γbγb γ max ∝ γ -p1 ∝ γ -p2 M[ CrabG G Kes 75G γ b [10 5 ] γ min [10 2 ]<1<30-<50<200 p κ [10 4 ]<100<128.3<2.8<2.3 How the break energy (γ b ) is determined? if γ min exist.

10 Broken Power-law Injection p2 (high energy) ~2.5 for allone acceleration process? 1.0 < p1 < 1.6 or nothing for G Because p1 has variety, rela. Maxwellian + single power – law injection can reproduce radio spectrum of several PWNe. One zonespatial structure may be important. CrabG G Kes 75G p p Constant velocity expansion Steady injection

Summary Pulsars have individual characters. Spin energy, spin-down time etc. Young TeV PWNe have small η. Is large η possible for non-TeV PWNe. (future work) Pair multiplicity κ > 10 4 (broken power-law injection) What is the origin to determine γb? Broken power-law injection High energy : one process, low energy: adiabatic cooling? (however, simple adiabatic cooling is not applicable to the Crab) 11 Thank you