Simulation of Intrabeam Scattering A. Vivoli*, M. Martini Thanks to : Y. Papaphilippou and F. Antoniou *

Slides:



Advertisements
Similar presentations
Copyright, 1996 © Dale Carnegie & Associates, Inc. Beyond Piwinski & Bjorken-Mtingwa: IBS theories, codes, and benchmarking Jie Wei Brookhaven National.
Advertisements

Frank Zimmermann, IBS in MAD-X, MAD-X Day, IBS in MAD-X Frank Zimmermann Thanks to J. Jowett, M. Korostelev, M. Martini, F. Schmidt.
IIAA GPMAD A beam dynamics code using Graphics Processing Units GPMAD (GPU Processed Methodical Accelerator Design) utilises Graphics Processing Units.
Benchmark of ACCSIM-ORBIT codes for space charge and e-lens compensation Beam’07, October 2007 Masamitsu AIBA, CERN Thank you to G. Arduini, C. Carli,
Halo calculations in ATF DR Dou Wang (IHEP), Philip Bambade (LAL), Kaoru Yokoya (KEK), Theo Demma (LAL), Jie Gao (IHEP) FJPPL-FKPPL Workshop on ATF2 Accelerator.
Emittance Measurement Simulations in the ATF Extraction Line Anthony Scarfe The Cockcroft Institute.
A new algorithm for the kinetic analysis of intra-beam scattering in storage rings. P.R.Zenkevich*,O. Boine-Frenkenheim**, A. Ye. Bolshakov* *ITEP, Moscow,
KJK 2/5/02 IIT Cooling Theory/Simulation Day Advanced Photon Source 1 Linear Theory of Ionization Cooling in 6D Kwang-Je Kim & Chun-xi Wang University.
Lattice calculations: Lattices Tune Calculations Dispersion Momentum Compaction Chromaticity Sextupoles Rende Steerenberg (BE/OP) 17 January 2012 Rende.
Introduction Status of SC simulations at CERN
Beamstrahlung and energy acceptance K. Ohmi (KEK) HF2014, Beijing Oct 9-12, 2014 Thanks to Y. Zhang and D. Shatilov.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
1 Development of models of intrabeam scattering for charged beams in storage rings E. Mikhaylova Joint Institute for Nuclear Research Dubna, Russia The.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 Lecture 15  Radiation Damping Radiation Damping USPAS,
Intra-beam Scattering Study for Low Emittance of BAPS S.K.Tian(IHEP)
New Progress of the Nonlinear Collimation System for A. Faus-Golfe J. Resta López D. Schulte F. Zimmermann.
Theoretical studies of IBS in the SPS F. Antoniou, H. Bartosik, T. Bohl, Y.Papaphilippou MSWG – LIU meeting, 1/10/2013.
Matching recipe and tracking for the final focus T. Asaka †, J. Resta López ‡ and F. Zimmermann † CERN, Geneve / SPring-8, Japan ‡ CERN, Geneve / University.
Status of Space-Charge Simulations with MADX Valery KAPIN ITEP & MEPhI, Moscow GSI, 19-Feb-2009
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
October 16, 2008 M. Martini 1 Intra-beam Scattering Studies for the CLIC damping Rings Status and Plan Michel Martini, CERN CLIC Workshop CERN, October.
M.E. Biagini, M. Boscolo, T. Demma (INFN-LNF) A. Chao, M.T.F. Pivi (SLAC). Status of Multi-particle simulation of INFN.
1 Kinetics Effects in Multiple Intra-beam Scattering (IBS). P.R.Zenkevich*, A.E.Bolshakov*, O. Boine-Frankenheim** *ITEP, Moscow, Russia **GSI, Darmstadt,
Synchrotron Radiation
Comparison between simulations and measurements in the LHC with heavy ions T. Mertens, R. Bruce, J.M. Jowett, H. Damerau,F. Roncarolo.
Oliver Boine-Frankenheim, HE-LHC, Oct , 2010, Malta Simulation of IBS (and cooling) Oliver Boine-Frankenheim, GSI, Darmstadt, Germany 1.
Intra-beam Scattering in the LCLS Linac Zhirong Huang, SLAC Berlin S2E Workshop 8/21/2003.
Collective effects in EDM storage ring A.Sidorin, Electron cooling group, JINR, Dubna.
GWENAEL FUBIANI L’OASIS GROUP, LBNL 6D Space charge estimates for dense electron bunches in vacuum W.P. LEEMANS, E. ESAREY, B.A. SHADWICK, J. QIANG, G.
Emittances Normalised r.m.s. Emittances at Damping Ring Extraction Horizontal Emittance (  m) Vertical Emittance (  m)
UPDATE IN PTC-ORBIT PSB STUDIES Space charge meeting ( ) * Vincenzo Forte * Follows LIS meeting presentation 16/04/2012.
By Verena Kain CERN BE-OP. In the next three lectures we will have a look at the different components of a synchrotron. Today: Controlling particle trajectories.
Status of the CLIC Damping Rings Optics and IBS studies Beam Physics meeting, 20 April 2011 F. Antoniou, Y. Papaphilippou.
Ion effects in low emittance rings Giovanni Rumolo Thanks to R. Nagaoka, A. Oeftiger In CLIC Workshop 3-8 February, 2014, CERN.
IBS Calculation Using BETACOOL He Zhang 2/26/2013 Jlab MEIC R&D Group Meeting.
Monday, Jan. 31, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #4 Monday, Jan. 31, 2005 Dr. Jae Yu 1.Lab Frame and Center of Mass Frame 2.Relativistic.
IBS and luminosity evolution with higher harmonic RF Tom Mertens (former Technical Student now doing PhD in Quantum Field Theory in Brussels) Some changes.
BBFP J. Wei’s Fokker-Planck solver for bunched beams November 21 st, 2007 CLIC Beam dynamics meeting Y. Papaphilippou.
2 February 8th - 10th, 2016 TWIICE 2 Workshop Instability studies in the CLIC Damping Rings including radiation damping A.Passarelli, H.Bartosik, O.Boine-Fankenheim,
Intra-Beam Scattering and Electron Cloud for the Damping Rings Mauro Pivi CERN/SLAC CLIC Collabortion Meeting CERN 9-11 May 2012 Thanks to: F. Antoniou,
Intrabeam scattering simulations and measurements F. Antoniou, Y. Papaphilippou CLIC Workshop 2013, 30/1/2013.
Adiabatic buncher and (  ) Rotator Exploration & Optimization David Neuffer(FNAL), Alexey Poklonskiy (FNAL, MSU, SPSU)
Intra-Beam scattering studies for CLIC damping rings A. Vivoli* Thanks to : M. Martini, Y. Papaphilippou *
Parameter scan for the CLIC damping rings July 23rd, 2008 Y. Papaphilippou Thanks to H. Braun, M. Korostelev and D. Schulte.
BNL trip  Goal of the BNL-FERMILAB- CERN collaboration  The codes  BB tune foot-prints  DA studies.
T. Demma (INFN-LNF) In collaboration with: M. Boscolo (INFN-LNF) A. Chao, M.T.F. Pivi (SLAC). Macroparticle simulation of IBS in SuperB.
IBS and Touschek studies for the ion beam at the SPS F. Antoniou, H. Bartosik, Y. Papaphilippou, T. Bohl.
IntraBeam Scattering Calculation T. Demma, S. Guiducci SuperB Workshop LAL, 17 February 09.
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
A. Aksoy Beam Dynamics Studies for the CLIC Drive Beam Accelerator A. AKSOY CONTENS ● Basic Lattice Sketches ● Accelerating structure ● Short and long.
OPERATED BY STANFORD UNIVERSITY FOR THE U.S. DEPT. OF ENERGY 1 Alexander Novokhatski April 13, 2016 Beam Heating due to Coherent Synchrotron Radiation.
Kinetics effects in multiple intra-beam scattering.
Envelope tracking as a tool for low emittance ring design
Electron Cloud, IBS, and Fast Ion Update
Benchmarking MAD, SAD and PLACET Characterization and performance of the CLIC Beam Delivery System with MAD, SAD and PLACET T. Asaka† and J. Resta López‡
HIAF Electron Cooling System &
Primary estimation of CEPC beam dilution and beam halo
Electron Cooling Simulation For JLEIC
Modelling and measurements of bunch profiles at the LHC FB
IntraBeam Scattering Calculation
IntraBeam Scattering Calculation
Intra-Beam Scattering modeling for SuperB and CLIC
Review of IBS: analytic and simulation studies
Beam-Beam Interaction in Linac-Ring Colliders
OSC simulation update Suntao Wang 10/06/2017.
ICFA Mini-Workshop, IHEP, 2017
Radiation Damping S.A. Bogacz, G.A. Krafft, S. DeSilva and R. Gamage
Radiation Damping - Low emittance lattices
He Zhang MEIC R&D Meeting, 07/09/2015
Emittance Studies at Extraction of the PS Booster: Emittance Calculation S. Albright, F. Antoniou, F. Asvesta, H. Bartosik, G.P. Di Giovanni, M. Fraser,
Presentation transcript:

Simulation of Intrabeam Scattering A. Vivoli*, M. Martini Thanks to : Y. Papaphilippou and F. Antoniou *

3/21/2016A. Vivoli, M. Martini, Multi-particle simulation code for IBS 2 CONTENTS Introduction Conventional Calculation of IBS SIRE structure Benchmark with conventional theories Analysis of simulation results Conclusions

IBS is the effect due to multiple Coulomb scattering between charged particles in the beam: 3/21/2016A. Vivoli, M. Martini, Multi-particle simulation code for IBS 3 P1P1 P2’P2’ P2P2 P1’P1’ IBS Growth Times IBS Radiation Damping Quantum Excitation Introduction: Intra-Beam Scattering in DR Evolution of the emittance: T k contain the effect of all the scattering processes in the beam at a certain time. F. Antoniou, IPAC10

Introduction: Conventional theories of IBS Conventional IBS theories in Accelerator Physics (Bjorken-Mtingwa, Piwinski–Martini) derive T k by the formula: 1.The particle distribution is inserted from outside the theory. 2.The integral is too complicate. In practise, the integral has been solved only for Gaussian particles distribution. In this case the formulas for the growth times reduce to: Growth rates are calculated at different points of the lattice and then averaged over the ring: s2s2 s1s1 s4s4 s3s3 s6s6 s5s5 3/21/20164A. Vivoli, M. Martini, Multi-particle simulation code for IBS

3/21/2016A. Vivoli, M. Martini, Multi-particle simulation code for IBS 5 Goals: 1.Follow the evolution of the particle distribution in the DR (we are not sure it remains Gaussian). 2.Calculate IBS effect for any particle distribution (in case it doesn’t remain Gaussian). IBS studies for the CLIC Damping Rings Development development of a tracking code computing the combined effect of radiation damping, quantum excitation and IBS during the cooling time in the CLIC DR. (Software for IBS and Radiation Effects)

3/21/2016A. Vivoli, M. Martini, Multi-particle simulation code for IBS 6 Software for IBS and Radiation Effects s2s2 s1s1 s4s4 s3s3 s6s6 s5s5 6-dim Coordinates of particles are calculated. Particles of the beam are grouped in cells. Momentum of particles is changed because of scattering. Invariants of particles are recalculated. The lattice is read from a MADX file containing the Twiss functions. Particles are tracked from point to point in the lattice by their invariats (no phase tracking up to now). At each point of the lattice the scattering routine is called. A routine has also been implemented in order to speed up the calculation of IBS effect. Radiation damping and excitation effects are evaluated at the end of every loop.

3/21/2016A. Vivoli, M. Martini, Multi-particle simulation code for IBS 7 SIRE: Motion in the DR Transversal invariants: Longitudinal invariant: The motion of the particles in the CLIC damping rings can be expressed through 3 invariants (and 3 phases). Emittance:

3/21/2016A. Vivoli, M. Martini, Multi-particle simulation code for IBS 8 Zenkevich-Bolshakov algorithm (from MOCAC) Relativistic Center of Mass Frame: Laboratory Frame: (P.R. Zenkevich, O. Boine-Frenkenheim, A. E. Bolshakov, A new algorithm for the kinetic analysis of inta-beam scattering in storage rings, NIM A, 2005) Radiation damping and quantum excitation are calculated with the formula:

3/21/2016A. Vivoli, M. Martini, Multi-particle simulation code for IBS 9 Lattice Recurrences Elements of the lattice with twiss functions differing of less than 10% are considered equal. Lattice: First reduction: + 3 X+ + Second reduction: + 2 X ( + 3 X+ ) + CLIC DR LATTICE: elements420 elements

3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 10 SIRE: Benchmarking (Gaussian Distribution) CLIC DR F. Antoniou, IPAC10

3/21/2016A. Vivoli, M. Martini, Multi-particle simulation code for IBS 11 SIRE: Benchmarking (Gaussian Distribution) on LHC

3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 12 SIRE: Distribution Study Case studies: A – Damping + QE B – Damping + IBS + QE C – Damping + IBS D – IBS ParameterABCD INITIAL  x,  y,  z  p (m,m,eV m) 74.3e-6,1.8e-6, 1.71e e-6, 1.8e-6, 1.70e e-6, 1.8e-6, 1.71e e-9,3.7e-9, 2.87e+3 FINAL  x,  y,  z  p (m,m,eV m) 229.7e-9, 3.76e-9, 2.88e e-9, 5.54e-9, 3.65e e-9, 3.61e-9, 1.58e e-6, 1.16e-8, 9.61e+3

3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 13  x (m)  y (m)  z (eV m) Injection13.27e e e+5 Extraction (SIRE) 4.104e e e+3 Extraction (MAD-X) 4.102e e e+3 Simulation of the CLIC Damping Rings case A: Beam parameters CLIC DR A: Damping + QE

3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 14 SIRE: IBS Distribution study A: Damping + QE ParameterValue Eq.  x (m rad) e-011 Eq.  y (m rad) e-013 Eq.   e-3 Eq.  z (m) 9.229e-4 Parameter    Confidence  P/P X Y

3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 15  x (m)  y (m)  z (eV m) Injection1.327e e e+5 Extraction (SIRE) 7.783e e e+3 Extraction (B-M) --- Simulation of the CLIC Damping Rings case B: Beam parameters CLIC DR B: Damping + IBS + QE 1/Tx (s -1 )1/Ty (s -1 )1/Tz (s -1 ) Bjorken-Mtingwa SIRE compressed (Gauss) SIRE not compressed (Gauss) SIRE compressed SIRE not compressed

3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 16 SIRE: IBS Distribution study B: Damping + IBS + QE ParameterValue Eq.  x (m rad) 7.783e-11 Eq.  y (m rad) 9.901e-13 Eq.   1.228e-3 Eq.  z (m) 1.04e-3 Parameter    Confidence  p/p e-4 X e-6 Y e-3

3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 17 SIRE: IBS Distribution study B: Damping + IBS + QE ParameterValue pp 1.166e+6 pp xx 1.325e+10 xx yy e+11 yy Parameter    ConfidenceSample %  P/P X Y

3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 18  x (m)  y (m)  z (eV m) Injection1.328e e e+5 Extraction (SIRE) 8.19e e Extraction (B-M) --- Simulation of the CLIC Damping Rings case C: Beam parameters CLIC DR C: Damping + IBS 1/Tx (s -1 )1/Ty (s -1 )1/Tz (s -1 ) Bjorken-Mtingwa SIRE compressed (Gauss) SIRE not compressed (Gauss) SIRE compressed SIRE not compressed

3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 19 SIRE: IBS Distribution study C: Damping + IBS ParameterValue Eq.  x (m rad) 8.192e-11 Eq.  y (m rad) 6.460e-13 Eq.   8.072e-4 Eq.  z (m) 6.833e-4 Parameter    Confidence  p/p 2497<1e-15 X2770<1e-15 Y e-12

3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 20 SIRE: IBS Distribution study C: Damping + IBS ParameterValue pp 1.722e+8 pp xx e+10 xx yy e+13 yy Parameter    ConfidenceSample %  P/P X e-444 Y

3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 21  x (m)  y (m)  z (eV m) Injection4.104e e Extraction (SIRE) 2.001e e Extraction (B-M) --- Simulation of the CLIC Damping Rings case D: Beam parameters CLIC DR D: IBS 1/Tx (s -1 )1/Ty (s -1 )1/Tz (s -1 ) Bjorken-Mtingwa SIRE compressed (Gauss) SIRE not compressed (Gauss) SIRE compressed SIRE not compressed

3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 22 SIRE: IBS Distribution study D: IBS ParameterValue Eq.  x (m rad) 2.001e-10 Eq.  y (m rad) 2.064e-12 Eq.   1.992e-3 Eq.  z (m) 1.687e-3 Parameter    Confidence  p/p <1e-15 X1441.7<1e-15 Y1466.9<1e-15

3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 23 SIRE: IBS Distribution study D: IBS ParameterValue pp 5.281e+7 pp xx 3.840e+10 xx yy 4.557e+12 yy Parameter    ConfidenceSample %  P/P X Y

Conclusions 3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 24 Investigation of IBS effect in the CLIC DR has been carried out with the simulation code SIRE: –Benchmarking with conventional IBS theories gave good agreement. –Evolution of the particle distribution shows deviations from Gaussian behaviour due to IBS effect. –IBS tends to develop tails of the particle distribution with a faster decay than for a Gaussian corresponding to the same beam parameters. –IBS effect on the actual distribution is reduced compared to the effect evaluated on a Gaussian corresponding to the same beam parameters. –In the CLIC DR this deviation is small (also due to the short cooling time) and discrepancy with Bjorken-Mtingwa calculation remains within the usual discrepancy of the theories.

3/21/2016A. Vivoli, M. Martini IBS studies for the CLIC DR 25 THANKS. The End