Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz 15 th September 2009 - Genoa 1 Investigation.

Slides:



Advertisements
Similar presentations
ILIAS 5-6/11/2004 WG T2 Task T2 (WG 11) AIM: exact definition (theoretical and experimental) of photo-thermal noise PARTICIPANTS INFN (AURIGA group; also.
Advertisements

Task M2 – Advanced Materials and Techniques for Resonant Detectors Motivation : Reduce thermal noise contribution to the acoustic detector noise budget.
T1 task- update Mike Plissi. 2 Collaboration Groups actively involved INFN-VIRGO MAT IGR-Glasgow Groups that have expressed interest INFN-AURIGA CNRS-LKB.
WP-M3 Superconducting Materials PArametric COnverter Detector INFN_Genoa Renzo Parodi.
SFB C4 06/06 1/15 Anja Zimmer Friedrich-Schiller-University Jena, Germany 3 rd ILIAS-GW Meeting, London October 27 th 2006 Relaxation mechanisms in solids.
Nawrodt 10/07 #1/21 R. Nawrodt, A. Schröter, C. Schwarz, D. Heinert, M. Hudl, W. Vodel, A. Tünnermann, P. Seidel STREGA Meeting Tübingen 10/
Thermal Stresses Jake Blanchard Spring Temp. Dependent Properties For most materials, k is a function of temperature This makes conduction equation.
Work Package 4: Development of low loss dielectric coatings for advanced detectors Scientific motivation: Mechanical dissipation from dielectric mirror.
Interpretation of bulk material measurements Anja Schröter Institute of Solid State Physics – Low Temperature Physics Friedrich-Schiller-University.
Bonding as an assembly technique in upgrades to aLIGO and detectors like ET and KAGRA R. Douglas 1, A. A. van Veggel 1, K. Haughian 1, D. Chen 2, L. Cunningham.
Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,
Composite mirror suspensions development status Riccardo DeSalvo For the ELiTES R&D group WP1 & 2 JGW-xxxxxx.
STREGA WP1/M1 mirror substrates GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
Design study for ET 3rd generation Gravitational Wave Interferometer Work Package 2 Suspension, Thermal noise and Cryogenics Piero Rapagnani
Nawrodt 05/2010 Thermal noise and material issues for ET Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,
Overview of coatings research and recent results at the University of Glasgow M. Abernathy, I. Martin, R. Bassiri, E. Chalkley, R. Nawrodt, M.M. Fejer,
1 An overview of work in Glasgow relevant to the design study Stuart Reid 1 SUPA, University of Glasgow Glasgow University – 22 July 2010.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
R&D activities in Florence Geppo Cagnoli INFN and U. of Glasgow WG2 & WG3 Meeting – 27 th Apr Firenze.
A new facility for thermal conductivity measurements Filippo Martelli Univ. of Urbino and INFN Florence GWADW 2006 – 27/5-02/ – La Biodola.
APCOM 041 P. Hockicko a), S. Jurečka b), P. Bury a), M. Jamnický c) and I. Jamnický a) a) University of Žilina, Department of Physics, Žilina, b)
JRA3 STREGA - Introduction Geppo Cagnoli IGR – University of Glasgow ILIAS-GW Meeting, Orsay, 5 th -6 th Nov 2004.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, H. Armandula 3, R. Bassiri 1, E. Chalkley 1 C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
1 Kazuhiro Yamamoto Institute for Cosmic Ray Research, the University of Tokyo Cryogenic mirrors: the state of the art in interferometeric gravitational.
Silicon as material for 3rd Generation detectors Geppo Cagnoli University of Glasgow INFN Sez. Firenze 2 nd ILIAS-GW Meeting – 25 th Oct. 2005, Palma de.
FSU Jena Nawrodt 10/06 #1/16 Ronny Nawrodt ILIAS/STREGA Annual Meeting London, 27 October 2006 Friedrich-Schiller-Universität Jena, Germany Cryogenic Q-measurements.
Cold damping of fused silica suspension violin modes V.P.Mitrofanov, K.V.Tokmakov Moscow State University G Z.
R&D on thermal noise in Europe: the STREGA Project Geppo Cagnoli University of Glasgow AMALDI 6 – Okinawa - Japan June
Francesco Cottone INFN & Physics Departments of Perugia, Pisa, Florence (Collaboration Work under VIRGO Project) Thermomechanical properties of silicon.
Effect of Charging on Thermal Noise Gregory Harry Massachusetts Institute of Technology - Core Optics and Suspensions Working Groups - March 19, 2004 –
Friedrich-Schiller-Universität Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz19 th May GWADW Kyoto 1 Losses in.
ILIAS - GWA N5 - Strega JRA3 General Meeting Orsay - November 5th-6th, 2004 M1 Activities.
Virgo-Material “macro” group M.Punturo. VIRGO-MAT2 VIRGO-MAT components Virgo-MAT is composed by three INFN groups –Firenze/Urbino M.Lorenzini, G.Losurdo,
Experimental investigation of dynamic Photothermal Effect
Thermal Noise performance of advanced gravitational wave detector suspensions Alan Cumming, on behalf of the University of Glasgow Suspension Team 5 th.
1 Kazuhiro Yamamoto Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Janyce Franc-Kyoto-GWADW1 Simulation and research for the future ET mirrors Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux.
Thermal Noise in Thin Silicon Structures
Suspension Thermal Noise Giles Hammond (University of Glasgow) on behalf of the Strawman Red Team GWADW 2012, 18 th May 2012 LIGO-G
Sapphire for the LCGT project Eiichi Hirose ICRR, University of Tokyo Kyohei Watanabe, Norikatsu Mio PSC, University of Tokyo GT Advanced Technology, Sep.
ACIGA High Optical Power Test Facility
STREGA & ET - 4th ILIAS-GW general meeting 1 STREGA legacy for ET Michele Punturo INFN Perugia.
G R LIGO’s Ultimate Astrophysical Reach Eric Black LIGO Seminar April 20, 2004 Ivan Grudinin, Akira Villar, Kenneth G. Libbrecht.
Mechanical Loss and Thermal Conductivity of Materials for KAGRA and ET
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
Design and Testing of a Silicon Suspension A. Cumming 1, G. Hammond 1, K. Haughian 1, J. Hough 1, I. Martin 1, R. Nawrodt 2, S. Rowan 1, C. Schwarz 2,
1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2.
The coating thermal noise R&D for the 3rd generation: a multitechnique investigation E. Cesarini 1,2), M.Prato 3), M. Lorenzini 2) 1)Università di Urbino.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, E. Chalkley 1, H. Armandula 3, R. Bassiri 1, C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
Measurement of coating mechanical loss Junko Katayama, K.Craig, K.Yamamoto, M.Ohashi ICRR 0.
Department of Physics & Astronomy Institute for Gravitational Research Scottish Universities Physics Alliance Brownian thermal noise associated with attachments.
STREGA WP4 coating development GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz Current status of the bulk.
1 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Insights from the inside Future Past Present Daniel Friedrich, Michael Britzger,
Ab Initio Property Prediction with Density Functional Theory (DFT) Relevant to Coating Thermal Noise Laser Interferometer Gravitational-Wave Observatory.
Loss measurements in bulk materials
Michele Punturo WP3 meeting, Cascina 9-July-2004
Mechanical Loss in Silica substrates
Studies of some properties of Hydroxide-Catalysis Bonds
Mechanical Loss of Vacuum Compatible Epoxies for Tuned Mass Dampers
Cryogenic Si-Si Bond Strength Testing
Thermal noise calculations for cryogenic optics
Mirror thermal noises and its implications on the mirror design
Current status of coating research in Glasgow
Cryogenic Si-Si Bond Strength Testing
Greg Ogin, Eric Black, Eric Gustafson, Ken Libbrecht
Characterisation of the aLIGO monolithic suspensions
R&D in Glasgow MATERIALS ACTIVITY AIM Silica
Presentation transcript:

Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz 15 th September Genoa 1 Investigation of mechanical losses of 3 rd generation gravitational wave detector materials Ch. Schwarz 1, S. Kroker 2, D. Heinert 1, A. Tünnermann 2, P. Seidel 1 1 Friedrich-Schiller-University Jena, Institute of Solid State Physics, Helmholtzweg 5, D Jena, Germany 2 Friedrich-Schiller-University Jena, Institute of Applied Physics, Albert-Einstein-Straße 15, D Jena, Germany DFG / SFB TR 7

Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics 2 Aim for WP2: Use of cryogenic techniques to reduce thermal noise - find and understand low mechanical loss materials for optics components (thermo elastic damping & phonon-phonon interaction) - suspension materials and geometries with best available thermal properties (e.g. conductivity) to reach required low temperatures and noise budget

Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics 3 Find and understand suitable materials for optics components Available materials: - silicon - calcium fluoride - crystalline quartz - fused silica

Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics 4 Most promising material: silicon - several publications about silicon (e.g. McGuigan et al.) show dips in the Q-factor around 120K and 18K > No measurements done in Jena showed dips at these temperatures

Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics 5 Loss measurements of silicon cantilevers (as suspension elements in ET) in a frequency range between 25 Hz and 250 kHz The lowest mechanical loss measured was limited by TED between 50 K and 300 K

Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics 6 Why is the knowledge about TED so important? - Depending on several parameters (,, …) TED limits the mechanical losses between 100 and 18K > for a prediction of TED for a defined (ET mirror, suspension) geometry it’s necessary to solve the Heat equation with deformation … thermal conductivity (2 nd order tensor) … thermal expansion coefficient The equation can be solved using COMSOL or ANSYS

Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics 7 Anisotropic solution of the heat equation using COMSOL TED limits the mechanical Losses between 20 K and 120 K

Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics 8 New design of the cantilevers for better handling Fragile cantilever covered by a “thick” frame of the same material

Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics 9 Measurement of thermal conductivity - exact values for of available silicon samples for mechanical loss measurements - geometry dependence of for cryogenic suspension elements (e.g. silicon cantilever as plate spring)

Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics 10 Future: - support of WP2 with experimental data of mechanical loss measurements and thermal conductivity - Further investigations of the phonon-phonon interactions at low temperatures using experimental data of thermal conductivity - calculation of TED for defined geometries