Physics 101: Lecture 26, Pg 1 Physics 101: Lecture 26 Thermodynamics II Final.

Slides:



Advertisements
Similar presentations
IB Physics Topic 3 & 10 Mr. Jean May 7 th, The plan: Video clip of the day Thermodynamics Carnot Cycle Second Law of Thermodynamics Refrigeration.
Advertisements

Entropy and Second Law of Thermodynamics
L 19 - Thermodynamics [4] Change of phase ice  water  steam
Entropy and the Second Law of Thermodynamics
Thermal & Kinetic Lecture 19 Changes in Entropy; The Carnot cycle LECTURE 19 OVERVIEW Calculating changes in entropy Misinterpretations of the 2 nd law.
Refrigerators Physics 313 Professor Lee Carkner Lecture 13.
Engines Physics 202 Professor Lee Carkner Lecture 18.
Second Law of Thermodynamics Physics 202 Professor Lee Carkner Lecture 18.
Chapter 18 The Second Law of Thermodynamics. Irreversible Processes Irreversible Processes: always found to proceed in one direction Examples: free expansion.
Physics 101: Lecture 31, Pg 1 Physics 101: Lecture 31 Thermodynamics, part 2 l Review of 1st law of thermodynamics l 2nd Law of Thermodynamics l Engines.
Second Law of Thermodynamics Physics 202 Professor Lee Carkner Lecture 18.
Engines Physics 202 Professor Lee Carkner Lecture 16.
The Advanced Chemical Engineering Thermodynamics The second law of thermodynamics Q&A_-5- 10/13/2005(5) Ji-Sheng Chang.
Thermo & Stat Mech - Spring 2006 Class 5 1 Thermodynamics and Statistical Mechanics Heat Engines and Refrigerators.
The Second Law of Thermodynamics Physics 102 Professor Lee Carkner Lecture 7.
UB, Phy101: Chapter 15, Pg 1 Physics 101: Chapter 15 Thermodynamics, Part I l Textbook Sections 15.1 – 15.5.
For the cyclic process shown, W is:D A] 0, because it’s a loop B] p 0 V 0 C] - p 0 V 0 D] 2 p 0 V 0 E] 6 p 0 V 0 For the cyclic process shown,  U is:
Lecture 10. Heat Engines and refrigerators (Ch. 4)
MHS Physics Department AP Unit II C 2 Laws of Thermodynamics Ref: Chapter 12.
Physics 1501: Lecture 37, Pg 1 Physics 1501: Lecture 37 Today’s Agenda l Announcements çHomework #12 (Dec. 9): 2 lowest dropped çMidterm 2 … in class.
Important Terms & Notes Conceptual Physics Mar. 12, 2014.
Physics Lecture Notes The Laws of Thermodynamics
PHYSICS 231 Lecture 31: Engines and fridges
Physics 213: Lecture 3, Pg 1 Packet 3.4 Thermodynamics Thermodynamics l Internal Energy l W = PΔV l 1 st Law of Thermodynamics: ΔU = Q – W l Define: Adiabatic,
Dr.Salwa Al Saleh Lecture 9 Thermodynamic Systems Specific Heat Capacities Zeroth Law First Law.
Chapter 15: Thermodynamics
Heat, Work, and Internal Energy Thermodynamic Processes.
VII. The second low of Thermodynamics
The Second Law of Thermodynamics
Physics 101: Lecture 28, Pg 1 Physics 101: Lecture 28 Thermodynamics II l Today’s lecture will cover Textbook Chapter Final.
Laws of Thermodynamics Thermal Physics, Lecture 4.
Heat Engines and The Carnot Cycle. First Statement of the Second Law of Thermodynamics The first statement of the second law is a statement from common.
Important Terms & Notes Conceptual Physics Mar. 17, 2014.
The Second Law of Thermodynamics Chapter 6. The Second Law  The second law of thermodynamics states that processes occur in a certain direction, not.
Lecture Outline Chapter 12 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Thermodynamic cycles 2nd law of Thermodynamics Carnot Cycle Lecture 30: 2nd Law of Thermodynamics.
Physics 101: Lecture 28, Pg 1 Physics 101: Lecture 28 Thermodynamics II l Today’s lecture will cover Textbook Chapter Final Check Final Exam.
Thermodynamics How Energy Is Transferred As Heat and Work Animation Courtesy of Louis Moore.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 13: Thermodynamics
Heat Engines forward and backward § 18.6–18.7. Heat Engines Divert heat flow.
PHY203: Thermal Physics Topic 4: Second Law of Thermodynamics Heat Engines Statements of the Second Law (Kelvin, Clausius) Carnot Cycle Efficiency of a.
Chapter 11 Laws of Thermodynamics. Chapter 11 Objectives Internal energy vs heat Work done on or by a system Adiabatic process 1 st Law of Thermodynamics.
Physics 207: Lecture 29, Pg 1 Physics 207, Lecture 29, Dec. 13 l Agenda: Finish Ch. 22, Start review, Evaluations  Heat engines and Second Law of thermodynamics.
Thermodynamics Davidson College APSI Ideal Gas Equations P 1 V 1 / T 1 = P 2 V 2 / T 2 PV = n R T (using moles) P V = N k B T (using molecules)  P:
203/4c18:1 Chapter 18: The Second Law of Thermodynamics Directions of a thermodynamic process Reversible processes: Thermodynamic processes which can be.
Thermodynamics. Definitions Thermodynamics is the study of processes in which energy is transferred as work and heat The system is a set of particles.
Thermodynamics Thermodynamics is a branch of physics concerned with heat and temperature and their relation to energy and work.
L 20 Thermodynamics [5] heat, work, and internal energy heat, work, and internal energy the 1 st law of thermodynamics the 1 st law of thermodynamics the.
Physics 101: Lecture 28, Pg 1 Physics 101: Lecture 28 Thermodynamics II l Today’s lecture will cover Textbook Chapter Final Check Final Exam.
Chapter 18 Second Law of Thermodynamics. Introduction 2 First law → conservation of energy Processes that conserve energy may not occur 400K300K heat.
Thermodynamic Processes
Second Law of Thermodynamics Heat generally cannot flow spontaneously from a material at lower temperature to a material at higher temperature. The entropy.
Physics 101: Lecture 28, Pg 1 Physics 101: Lecture 28 Thermodynamics II l Today’s lecture will cover Textbook Chapter
Thermodynamics II Thermodynamics II. THTH TCTC QHQH QCQC W HEAT ENGINE THTH TCTC QHQH QCQC W REFRIGERATOR system l system taken in closed cycle   U.
Lecture 26: Thermodynamics II l Heat Engines l Refrigerators l Entropy l 2 nd Law of Thermodynamics l Carnot Engines.
Chapter 12 Laws of Thermodynamics. Chapter 12 Objectives Internal energy vs heat Work done on or by a system Adiabatic process 1 st Law of Thermodynamics.
Chapter 20 - Thermodynamics A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University © 2007.
First law of thermodynamics l first law of thermodynamics: heat added to a system goes into the internal energy of the system and/or into doing work heat.
Lecture 27Purdue University, Physics 2201 Lecture 27 Thermodynamics II Physics 220.
Physics 101: Lecture 26, Pg 1 Chapter 15, Problem 3 Consider a hypothetical device that takes 1000 J of heat from a hot reservoir at 300K, ejects 200 J.
Entropy 1 m3 of N2 gas is in a sealed container at room temperature. The gas increases its volume by two processes 1) isothermal expansion and 2) adiabatic.
Which statement about these two thermodynamic processes is correct?
Physics 101: Lecture 28 Thermodynamics II
The Laws of Thermodynamics
The Laws of Thermodynamics
L 20 Thermodynamics [5] heat, work, and internal energy
Heat Engines Entropy The Second Law of Thermodynamics
Physics 101: Lecture 31 Thermodynamics, part 2
Presentation transcript:

Physics 101: Lecture 26, Pg 1 Physics 101: Lecture 26 Thermodynamics II Final

Physics 101: Lecture 26, Pg 2 THTH TCTC QHQH QCQC W HEAT ENGINE THTH TCTC QHQH QCQC W REFRIGERATOR system l system taken in closed cycle   U system = 0 l therefore, net heat absorbed = work done Q H - Q C = W (engine) Q C - Q H = -W (refrigerator) energy into green blob = energy leaving green blob Engines and Refrigerators 11

Physics 101: Lecture 26, Pg 3 THTH TCTC QHQH QCQC W HEAT ENGINE The objective: turn heat from hot reservoir into work The cost: “waste heat” 1st Law: Q H -Q C = W efficiency e  W/Q H =W/Q H = (Q H -Q C )/Q H = 1-Q C /Q H Heat Engine: Efficiency 13

Physics 101: Lecture 26, Pg 4 17

Physics 101: Lecture 26, Pg 5 THTH TCTC QHQH QCQC W REFRIGERATOR The objective: remove heat from cold reservoir The cost: work 1st Law: Q H = W + Q C coeff of performance K r  Q C /W = Q C /W = Q C /(Q H - Q C ) Refrigerator: Coefficient of Performance 22

Physics 101: Lecture 26, Pg 6 New concept: Entropy (S) l A measure of “disorder” l A property of a system (just like p, V, T, U) è related to number of number of different “states” of system l Examples of increasing entropy: è ice cube melts è gases expand into vacuum l Change in entropy: è  S = Q/T »>0 if heat flows into system (Q>0) »<0 if heat flows out of system (Q<0) 25

Physics 101: Lecture 26, Pg 7 Second Law of Thermodynamics l The entropy change (Q/T) of the system+environment  0 è never < 0 è order to disorder l Consequences è A “disordered” state cannot spontaneously transform into an “ordered” state è No engine operating between two reservoirs can be more efficient than one that produces 0 change in entropy. This is called a “Carnot engine” 31

Physics 101: Lecture 26, Pg 8 Carnot Cycle l Idealized Heat Engine è No Friction   S = Q/T = 0 è Reversible Process »Isothermal Expansion »Adiabatic Expansion »Isothermal Compression »Adiabatic Compression 32

Physics 101: Lecture 26, Pg 9 THTH TCTC QHQH QCQC W HEAT ENGINE The objective: turn heat from hot reservoir into work The cost: “waste heat” 1st Law: Q H -Q C = W efficiency e  W/Q H =W/Q H = 1-Q C /Q H  S = Q C /T C - Q H /T H  0  S = 0 for Carnot Therefore, Q C /Q H  T C / T H Q C /Q H = T C / T H for Carnot Therefore e = 1 - Q C /Q H  1 - T C / T H e = 1 - T C / T H for Carnot e = 1 is forbidden! e largest if T C << T H Engines and the 2nd Law 36

Physics 101: Lecture 26, Pg 10 Summary l First Law of thermodynamics: Energy Conservation  Q =  U + W l Heat Engines è Efficiency = = 1-Q C /Q H l Refrigerators è Coefficient of Performance = Q C /(Q H - Q C ) Entropy  S = Q/T l 2 nd Law: Entropy always increases! l Carnot Cycle: Reversible, Maximum Efficiency e = 1 – T c /T h 50